
Uraniborg’s Device Preloaded App Risks Scoring Metrics

Billy Lau1, Jiexin Zhang2, Alastair R. Bereford2, Daniel Thomas3, and René Mayrhofer4,1

1Android Security and Privacy, Google Inc.
2University of Cambridge
3University of Strathclyde

4Johannes Kepler University Linz
billylau@google.com, {jz448,arb33}@cl.cam.ac.uk, d.thomas@strath.ac.uk, rm@ins.jku.at

August 2020

1 Introduction

The security of Android devices depends on a wide range of factors. In this paper we focus on quantifying the
risks associated with one important factor: the security and privacy posture of preloaded apps. Such applications
deserve particular attention since they are installed by the manufacturer on all devices of a particular make and
model, individual apps may have elevated privileges beyond those available to apps installed via the Google Play
Store, and typically cannot be removed by the user. In order to measure the risk presented by preloaded apps
in a quantifiable way, we adopt a numerical approach and derive a single overall score for a given handset and
therefore support the relative comparison of risks posed by different handsets.

Due to the difficulty in computing the security and privacy risk, we approximate the actual risk by estimating
the attack surface1 presented by this layer of software. We therefore present an extensible mathematical software
framework that allows us to define, compute, and analyze various aspects of security and privacy risks of preloaded
Android apps in a systematic manner.

This work fits into a larger effort called Uraniborg [12]. Uraniborg is designed to be an open-access observatory
or database of preloaded app metadata that is envisioned to cover all Android devices in the ecosystem, for the
benefit of end users. An instance of Uraniborg is hosted on the Android Device Security Database website [8].

Specifically, this work attempts to quantitatively measure the change in the risk introduced by preloaded apps
on a given Android device by comparing it against a baseline risk measurement: Uraniborg’s Device Preloaded
App Risk (DPAR). It specifically does not consider the exact utility or features provided by the app. We assume
that a perfect baseline implementation exists, where security risks have been considered and tailored to produce
a minimally functional2 Android device.

While we acknowledge that a number of apps are preloaded in order to provide additional value and features,
every line of additional code comes with an inherent security risk due to the potential bugs that can turn into
security vulnerabilities or be abused by developers themselves. In other words, configuration and installation of
every app on a device contributes to overall device security. Thus, it is important to note that the scores produced
do not provide an absolute mandate of what is good or bad, but instead provide a quantitative comparison relative
to a minimalistic build and measure the additional risk introduced by the manufacturer through the introduction
of preloaded apps on a specific device.

While we consider the likelihood and damage potential of security risk, we currently do not consider the cost
of such risk. This is mainly because the cost is usually associated with the attempt to measure the difficulty of
launching a certain attack. Based on the information that we are working on (metadata of packages and other
device configurations but explicitly without a model of potential adversaries), we are not able to factor the cost
into consideration for this framework. Instead, we assume equal cost for all preloaded apps.

1Note that the attack surface of any app – preloaded or user-installed, system-privileged or not – can only be measured precisely
when related to specific attack vectors. In the general case, we are unaware of frameworks for accurately quantifying the attack
surface w.r.t. potential future threats. Therefore, attack surface is loosely estimated by the set of (privileged) permissions and
entrance points an app has.

2While this may be subjective, roughly, the device should be able to boot, make and receive calls and SMSes, and be able to
connect to the Internet.

1

2 Risk Computation Framework

After considering whether to adopt a risk score represented by a bounded range (e.g. a score in the range from
1 to 10) or an unbound range (e.g. the natural numbers), we have settled on the bounded scoring system. This
is largely driven by the motivation to have an output in a format that is more easily understood by the general
public. Empirically and anecdotally, it is much simpler for consumers to decide on a rating of a product on
e-commerce websites if the rating system is in the form of 5 stars. We envisage regular reviews of the scoring
method in order to ensure we continue to evaluate risk objectively; this will require us to annotate scores with a
version number or date (e.g. current year).

In the first version of our risk score, we consider the following three categories of security and privacy risks
to calculate the bounded risk score:

• Platform Signature Risk

• Pregranted Permissions Risk

• Cleartext Traffic Risk

We acknowledge that the three categories of risks are not the only types of risks that are presented by
preloaded apps today. However, they represent the major directly measurable risk types — in contrast to other
important but difficult-to-measure categories such as code security (susceptibility to direct vulnerabilities in the
app code) or entrance points (for other code to call into such apps). As we find more signals, we will update the
model.

2.1 Baseline

A measurement is fundamentally a comparison of a subject to a reference point. Therefore, in our work, we
calculate the increase in attack surface and infer risk from it. For this purpose, we compare every Android device
against a baseline implementation. This baseline implementation must have the following properties:

• It must satisfy basic criteria that allows it to be called an Android device [2], including a complete imple-
mentation of the Android platform security model [13].

• It must be loadable and bootable on a physical device (not just in emulator or virtual machine).

• It must be able to perform basic operations such as:

– make and receive phone calls,

– send and receive SMSes,

– connect to or browse the Internet, and

– install other Android compatible applications.

• Its source code is publicly accessible.

The Android Open Source Project (AOSP) [1] builds fulfill all the criteria listed above. And for builds running
Android 8.1.0 and above, Android defines a generic system image (GSI) [6] that fulfills all the criteria above as
well. These builds have the following properties:

• They fulfill requirements in Android Compatibility Definition Document (CDD) [2], passing Compatibility
Test Suite (CTS) [4], allowing it to be called Android.

• They are loadable and bootable on physical devices.

• When booted, they are usable.3

• They are built from source code that is open source [5, 3].

Thus, we have identified and set GSI and AOSP builds as the baseline for all derivative measurements in
our framework. In our implementation, we have made use of GSI builds whenever available as the baseline for
comparison, and AOSP builds when GSI builds are not available.

For a fairer comparison, we compare each target build/device with a baseline of the same API level. This
is because we know that new changes are introduced with each release. It would be unfair to compare a device
with the latest OS version with a baseline that was released three years ago.

Therefore, any scores that are computed in any risk category should be interpreted as a measurement of the
additional risk introduced due to either the addition of APKs or modification/customization of similar APKs
existing in the baseline. For this purpose, a score in each category is computed for a GSI build. And there are
different baselines according to which API level or OS release we are comparing.

3We are able to make phone calls and send/receive SMSes using these builds.

2

3 General Formula

In order to quantify risks for the purposes of analysis and comparison, we need a numerical approach of repre-
senting such risks. To do this, we utilize the following formula [14] to standardize the computation of risks across
all devices and all categories of risks:

β = λ× φ (1)

where λ is the likelihood of the risk being measured, and φ is the damage potential of the risk category being
measured. We explain each term in more detail in the following sections.

3.1 Likelihood

For each category of risk that we consider, we assume security risk increases as the volume of code increases, and
therefore the likelihood of a security failure is estimated as the proportion of additional attack surface introduced.
Due to the way that we mathematically compute likelihood (Equation 2), its value is bounded between 0 and
1, much like probability. However, we intentionally do not use the term “probability” as the construct of the
likelihood value differs from the classical definitions of probability.

Across all categories, we use the following formula to define likelihood:

λm =
|At,m \ A0,m|
|At,m|

(2)

where:
m is the risk category that we are measuring, as defined in Section 4;
At,m is the set of apps on a target device that fulfills m’s risk definition;
A0,m is the set of apps on a baseline build that meets the same criteria; and
\ is the set complement operator.

The likelihood is the number of apps with a particular risk on the target that are not in the baseline image
divided by the number of apps with that risk on the target. Using this formula, if a device does not preinstall
any additional app other than those found on a GSI (or AOSP, respectively) build, the target device would score
a 0, as the numerator would evaluate to 0.

Note that when the manufacturer does not introduce any new packages, the denominator value would never
be zero. The only scenario when this would occur is when manufacturer does not include any of the apps that are
bundled in a corresponding baseline build. If this happens, the build, by definition, is no longer a valid Android
build, as it would no longer fulfill the CDD [2].

3.2 Gaming the score

We do not consider OEMs as adversaries in the traditional sense, however OEMs wish to obtain a good score, so
it is important that the scoring method encourages changes which result in positive security improvements, and
discourages changes which reduce device security.

An advantage of our approach to scoring is that malicious players can try to improve their Uraniborg score
by removing or merging GSI apps from their builds, but the risk score calculated via this formula will stay the
same, due to the property of the set complement operator (as compared to utilizing |At|−|A0| as the numerator).
That is, we intentionally do not measure the impact of apps removed from the baseline as this may allow the
risk score to be gamed.

Shrewd OEMs may try to lower their build’s risk score by merging additional apps that they preload into a
single preloaded app. Unfortunately, such an approach to lowering of the risk score may actually come with an
increase in real risk as merged apps will require the superset of all permissions of the previously separate apps
and therefore do not benefit from Android app sandboxing to isolate privileged code from each other. In future
iterations we may capture such behaviour but for now we note that merging multiple apps into a single app
likely represents significant additional work (thereby acting as a disincentive). In any case, OEMs cannot easily
merge third-party apps they bundle into their builds for various reasons including different signing keys or build
systems, which is another argument against expecting significant gaming of this metric by merging previously
separate apps.

As noted previously, our approach to calculating likelihood is subject to change in future iterations based
on how OEMs in this space evolve. We therefore have the opportunity to take corrective action if our scoring
method is gamed.

3

3.3 Damage Potential

Damage potential (denoted by φ in Formula 1) is essentially a statement (or again, approximation) of how severe
a category of risk is. We currently assign a numerical value per category based on our domain knowledge and
expertise in analyzing preloaded apps.

In this iteration, we assign scores for damage potential for each risk type introduced in Section 2 and further
defined in Section 4 as shown in Table 1.

Category (Risk metric) Damage Potential Value (φ)
Platform Signature Risk 6

Pregranted Permissions Risk 3
Cleartext Traffic Risk 1

Total 10

Table 1: Mapping of risk categories to damage potential values

We currently assign the heaviest weight to the platform signature category because platform signed apps have
access to the most privileged resources on the system and represents over half of the overall risk.

When more risk categories are identified in the future, the distribution of damage potential may change to
reflect the proportion of the individual risk category with respect to the others. However, the total score will
continue to add up to 10.

3.4 Uraniborg’s Device Preloaded App Risk (DPAR)

Uraniborg’s Device Preloaded App Risk (DPAR) score is a composite score of the risk categories that we intro-
duced in Section 2. In fact, it is the sum of individual scores from each metric.

We have picked a theoretical limit of 10 as the maximum risk score (Btotal) any device can attain in this
framework iteration. The DPAR score offers easy interpretation and comparison: the higher the score, the more
risk there is.

The formula is as follows:

Btotal = βps + βpp + βct (3)

= λps · φps + λpp · φpp + λct · φct (4)

= λps · 6 + λpp · 3 + λct (5)

where:
ps represents the platform signature category;
pp represents the pregranted permissions category;
ct represents the cleartext traffic category;
βcategory is the risk score for individual categories;
λcategory is the likelihood value of the measured category;
φcategory is the damage potential value of the measured category.

4 Risk Categories

In this section, we discuss each risk type or category in more depth.

4.1 Platform Signature Risks

In the Android execution environment, not every preloaded app has equal power or capability. In particular,
apps that are signed using the platform signature enjoy an array of additional capabilities; these apps are able to
make use of certain signature level permissions and/or access certain data that other privileged apps do not have
access to. Therefore, a preloaded app may have different capabilities based on whether it is platform signed. We
highlight this difference and try to quantify the added risks introduced by platform-signed apps.

In particular, we try to account for privilege escalation risks that are embedded and carried by apps signed
using platform keys, as they become the attack vector for other (unprivileged) apps. The score we compute also
embodies the possibility of an insider attack where a rogue app that is already equipped with malicious code is
(re-)signed using the platform key.

To determine if an app is signed using the platform key, we compare its signature with the package named
android from the same build. If it matches, the app is platform signed.

4

4.1.1 Formula

Following the general formula (defined in Section 3), the formula to compute the platform signature risk for a
given build is as follows:

βps = λps × φps (6)

=
|At,ps \ A0,ps|
|At,ps|

× 6 (7)

where:
At,ps is the set of apps on a target device that are signed/verified using platform key/certificate,
A0,ps is the set of apps on a corresponding baseline build that are signed/verified using platform key/certificate.

4.2 Pregranted Permissions Risks

For preloaded apps, Android provides a mechanism for OEMs to grant certain privileges that are not available for
ordinary apps that are installed during normal runtime, called privileged permissions whitelisting [7]. Permissions
granted via the whitelisting process are called pregranted permissions. This unfortunately bypasses the normal
user consent or runtime permission step, and therefore allows privileged permissions to be granted, potentially
without user knowledge or consent.

Therefore, we attempt to quantify the risk posed by the pregranting of risky or privileged4 permissions with
the following method. We first classify Android permissions [11] into severity categories. Table 2 shows this
classification. The classification is made using our expertise with Android’s permission system and the risks of
the capabilities that the individual permissions are guarding.

We then assign risk scores according to how severe each category of permission would be if they were abused,
based on the type of data and/or capability that they guard against.

4.2.1 Formula

The formula for this category differs slightly from the general formula, although the larger part fits into the
general formula.

We begin with some building blocks. Instead of counting the number of apps, we compute scores based on the
number and type of pregranted permissions we found among non-platform-signed apps. For this, we introduce
an intermediary term called the raw pregranted privileged permissions score (τ), defined as follows:

τcat = γcat

appk∑
i=app0

εcat,i (8)

where:
cat is the permission risk category, as defined in Section 4.2.2;
γcat is weight or score of the permission category, where γcat ∈ {100, 10, 7.5, 5, 2.5, 0} (also refer to Table 2);
i iterates through every preloaded app on the target build that is not signed using platform signature;
εcat,i is the count of pregranted permissions in app i that map to the current category being evaluated, cat.

With this, we are now able to define a total score (ξ) for pregranted permission risks, which is a composite
score of all the raw scores (τ) for each permission category; formula as below:

ξbuild =

Astronomical∑
cat=Low

τcat (9)

where:
cat is the permission risk category (refer to Table 2);
τcat is the raw pregranted permissions score, as defined in Equation 8.

After obtaining the total score, we apply a variation of the general formula (Equation 1) by tweaking the
definition of likelihood (λ) in Equation 2 to compute the score for pregranted permissions, as below:

βpp = λpp × φpp (10)

=
ξt − ξ0
ξt

× 3 (11)

4This is to be understood semantically, and not directly mapped onto Android permission framework’s privileged protection
level.

5

https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/R.attr#protectionLevel

where:
ξt is the total score computed on a target device following Equation 9;
ξ0 is the total score computed on a baseline build following the same equation.

4.2.2 Permission Risk Categories

In Table 2, we enumerate and categorize those permissions we consider risky as pregranted permissions. It is
important to highlight that the effort to complete this categorization for the entire Android permission space is
currently a work-in-progress.

The permission category weight values are assigned based on their relative value to the other categories. For
instance, while the number may look large, we assign 100 for the ASTRONOMICAL category to give it a
sense of about 10x the magnitude of risk as compared to its next lower category (CRITICAL), which had an
assignment of 10. We created the ASTRONOMICAL category to adjust for the abuse phenomena that we observe
in the wild. In this case, we categorize the INSTALL PACKAGES permission in this category because it allows for
silent installation of arbitrary APKs, has had high visibility impact in terms of abuse and exploitation in the past,
and provides the most direct method of compromising the security of users and their data. We may “upgrade”
other permissions to this category in future revisions should we find more evidence of other permissions that
display such a profile.

Note that these permissions are classified based on their guarded capabilities in Android 10 onward. With
each OS release, potential changes or refactoring may happen that may decrease or increase a permission’s
current category. A good example of this is that prior to Android 10, the READ PHONE STATE permission would
be classified as HIGH, due to the permanent device identifiers (e.g. (IMEI/MEID, IMSI, SIM, and build serial)
that it guards. However, starting from Android 10, a bulk of the sensitive information that can be used for
tracking has been moved, refactored or rescoped into a new permission called READ PRIVILEGED PHONE STATE,
putting the new permission in the HIGH category, but resulting in the READ PHONE STATE permission moving to
LOW.

Permission Category Weight Permission Name

ASTRONOMICAL 100 android.permission.INSTALL PACKAGES

CRITICAL 10

android.permission.COPY PROTECTED DATA

android.permission.WRITE SECURE SETTINGS

android.permission.READ FRAME BUFFER

android.permission.MANAGE CA CERTIFICATES

android.permission.MANAGE APP OPS MODES

android.permission.GRANT RUNTIME PERMISSIONS

android.permission.DUMP

android.permission.CAMERA

android.permission.SYSTEM CAMERA

android.permission.MANAGE PROFILE AND DEVICE OWNERS

android.permission.MOUNT UNMOUNT FILESYSTEMS

HIGH 7.5

android.permission.INSTALL GRANT RUNTIME PERMISSIONS

android.permission.READ SMS

android.permission.WRITE SMS

android.permission.RECEIVE MMS

android.permission.SEND SMS NO CONFIRMATION

android.permission.RECEIVE SMS

android.permission.READ LOGS

android.permission.READ PRIVILEGED PHONE STATE

android.permission.LOCATION HARDWARE

android.permission.ACCESS FINE LOCATION

android.permission.ACCESS BACKGROUND LOCATION

android.permission.BIND ACCESSIBILITY SERVICE

android.permission.ACCESS WIFI STATE

com.android.voicemail.permission.READ VOICEMAIL

android.permission.RECORD AUDIO

android.permission.CAPTURE AUDIO OUTPUT

android.permission.ACCESS NOTIFICATIONS

android.permission.INTERACT ACROSS USERS FULL

6

android.permission.BLUETOOTH PRIVILEGED

android.permission.GET PASSWORD

android.permission.INTERNAL SYSTEM WINDOW

MEDIUM 5

android.permission.ACCESS COARSE LOCATION

android.permission.CHANGE COMPONENT ENABLED STATE

android.permission.READ CONTACTS

android.permission.WRITE CONTACTS

android.permission.CONNECTIVITY INTERNAL

android.permission.ACCESS MEDIA LOCATION

android.permission.READ EXTERNAL STORAGE

android.permission.WRITE EXTERNAL STORAGE

android.permission.SYSTEM ALERT WINDOW

android.permission.READ CALL LOG

android.permission.WRITE CALL LOG

android.permission.INTERACT ACROSS USERS

android.permission.MANAGE USERS

android.permission.READ CALENDAR

android.permission.BLUETOOTH ADMIN

android.permission.BODY SENSORS

LOW 2.5

android.permission.DOWNLOAD WITHOUT NOTIFICATION

android.permission.PACKAGE USAGE STATS

android.permission.MASTER CLEAR

android.permission.DELETE PACKAGES

android.permission.GET PACKAGE SIZE

android.permission.BLUETOOTH

android.permission.DEVICE POWER

NONE 0

android.permission.ACCESS NETWORK STATE

android.permission.RECEIVE BOOT COMPLETED

android.permission.WAKE LOCK

android.permission.FLASHLIGHT

android.permission.VIBRATE

Table 2: Permission Mapping to Category and Weight

4.3 Cleartext Traffic Risks

Apps that use cleartext traffic in their communication with the outside world add risk to the user using them.
This signal can be easily determined from the app’s manifest, and thus scoring is possible.

The criteria we are measuring is if an app that targets API 28 and above declares android:usesClear-

textTraffic="true" in its manifest or the app targets API 27 and below and does not declare android:uses-

CleartextTraffic="false". In our implementation, we rely on Android’s PackageManager [10] during runtime
to tell us about whether the FLAG USES CLEARTEXT TRAFFIC [9] is set for the application in question or not. This
flag is added in API level 23 which is the minimum device API version supported by Uraniborg.

4.3.1 Formula

Here, we define the risk value to be the proportion of apps that intend to use cleartext traffic in their network
communication on any given build as compared to that on a corresponding baseline build.

Again, we instantiate the general formula (as defined in Equation 1), which works quite well directly in our
computation for this category:

βct = λct × φct (12)

=
|At,ct \ A0,ct|
|At,ct|

× 1 (13)

where:
At,ct is the set of apps on a target device that targets API level 28 and above and declares android:uses-

CleartextTraffic="true" in its manifest,
A0,ct is the set of apps on a corresponding baseline build that fulfil the same criteria.

7

5 Conclusions & Future Work

In conclusion, we presented a framework to numerically quantify and estimate the risks posed by an Android
device or build via the customizing and adding of preloaded apps. Our comparison is relative to a baseline, for
which we selected the AOSP or GSI builds.

While this is the first step in our attempt to quantify the risk of preloaded apps on an Android device, we
hope that the framework continues to evolve and welcome feedback on the ways we can improve it and make the
overall scoring as robust and accurate as possible.

References

[1] AOSP. About the Android Open Source Project. Aug. 2020. url: https://source.android.com/.

[2] AOSP. Android Compatibility Definition Document. url: https://source.android.com/compatibility/
cdd (visited on 08/03/2020).

[3] AOSP. Building GSIs. Aug. 2020. url: https://source.android.com/setup/build/gsi#building-
gsis.

[4] AOSP. Compatibility Test Suite. Aug. 2020. url: https://source.android.com/compatibility/cts.

[5] AOSP. Downloading the Source. Aug. 2020. url: https : / / source . android . com / setup / build /

downloading.

[6] AOSP. Generic System Images. Aug. 2020. url: https://source.android.com/setup/build/gsi.

[7] AOSP. Privileged Permission Whitelisting. Aug. 2020. url: https://source.android.com/devices/
tech/config/perms-whitelist.

[8] Android Device Security University Consortium. Android Device Security Database. Aug. 2020. url: https:
//www.android-device-security.org/.

[9] Android Developers. ApplicationInfo#FLAG USES CLEARTEXT TRAFFIC. Aug. 2020. url: https://
developer.android.com/reference/android/content/pm/ApplicationInfo#FLAG_USES_CLEARTEXT_

TRAFFIC.

[10] Android Developers. PackageManager. Aug. 2020. url: https://developer.android.com/reference/
android/content/pm/PackageManager.

[11] Android Developers. Permissions Overview. Aug. 2020. url: https://developer.android.com/guide/
topics/permissions/overview.

[12] Billy Lau. Uraniborg. Aug. 2020. url: https : / / github . com / android / security - certification -

resources/tree/master/ioXt/uraniborg.

[13] René Mayrhofer et al. The Android Platform Security Model. 2019. arXiv: 1904.05572 [cs.CR].

[14] J.D. Meier. “Improving Web Application Security: Threats and Countermeasures”. In: Step 6 Rate the
Threats, available at: https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=
pandp.10)#step-6-rate-the-threats. Microsoft Press, 2003. Chap. 3.

8

https://source.android.com/
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://source.android.com/setup/build/gsi#building-gsis
https://source.android.com/setup/build/gsi#building-gsis
https://source.android.com/compatibility/cts
https://source.android.com/setup/build/downloading
https://source.android.com/setup/build/downloading
https://source.android.com/setup/build/gsi
https://source.android.com/devices/tech/config/perms-whitelist
https://source.android.com/devices/tech/config/perms-whitelist
https://www.android-device-security.org/
https://www.android-device-security.org/
https://developer.android.com/reference/android/content/pm/ApplicationInfo#FLAG_USES_CLEARTEXT_TRAFFIC
https://developer.android.com/reference/android/content/pm/ApplicationInfo#FLAG_USES_CLEARTEXT_TRAFFIC
https://developer.android.com/reference/android/content/pm/ApplicationInfo#FLAG_USES_CLEARTEXT_TRAFFIC
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://github.com/android/security-certification-resources/tree/master/ioXt/uraniborg
https://github.com/android/security-certification-resources/tree/master/ioXt/uraniborg
https://arxiv.org/abs/1904.05572
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#step-6-rate-the-threats
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10)#step-6-rate-the-threats

	Introduction
	Risk Computation Framework
	Baseline

	General Formula
	Likelihood
	Gaming the score
	Damage Potential
	Uraniborg's Device Preloaded App Risk (DPAR)

	Risk Categories
	Platform Signature Risks
	Formula

	Pregranted Permissions Risks
	Formula
	Permission Risk Categories

	Cleartext Traffic Risks
	Formula

	Conclusions & Future Work

