
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Katrin A. Kern, 11774714

Submission
Institute of
Networks and Security

Thesis Supervisor
Dr.Michael Roland

March 2022

ComparingModern
Front-End Frameworks

Bachelor’s Thesis
to confer the academic degree of

Bachelor of Science
in the Bachelor’s Program

Computer Science

https://jku.at/

Abstract

Web technologies have evolved rapidly in the last couple of years and applica-
tions have gotten significantly bigger. Common patterns and tasks have been
extracted into numerous frameworks and libraries, and especially JavaScript
frameworks seem to be recreated daily. This poses a challenge to many devel-
opers who have to choose between the frameworks, as a wrong decision can
negatively influence the path of a project.

In this thesis, the threemostpopular front-end frameworksAngular,React and
Vue are compared by extracting relevant criteria from the literature and eval-
uating the frameworks against these criteria. Angular is then used to develop a
web application for displaying data from the Android Device Security Rating.

ii

Acknowledgements

This work has been carried out within the scope of ONCE (FFG grant
FO999887054) in the program “IKT der Zukunft” and has partially been
supported by Digidow (Christian Doppler Laboratory for Private Digital Au-
thentication in thePhysicalWorld) and theLITSecure andCorrect SystemsLab.
We gratefully acknowledge financial support by the Austrian Federal Ministry
for Climate Action, Environment, Energy, Mobility,Innovation and Technol-
ogy (BMK), the Austrian Federal Ministry for Digital and Economic Affairs
(BMDW), the National Foundation for Research, Technology and Develop-
ment, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey
biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semicon-
ductors Austria GmbH & Co KG, Österreichische Staatsdruckerei GmbH, and
the State of Upper Austria.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Evaluation 2
2.1 Methodology . 2
2.2 Literature . 2
2.3 Evaluation Criteria . 3
2.4 Frameworks . 5

2.4.1 Angular . 5
2.4.2 React . 7
2.4.3 Vue . 8

2.5 Evaluation . 8
2.5.1 Performance . 8
2.5.2 Reliability . 9
2.5.3 Maintainability . 9
2.5.4 Usability . 10
2.5.5 Security . 11
2.5.6 Summary . 11

3 Implementation of a Database View in Angular 13
3.1 Overview . 13
3.2 Complementary Technologies . 14

3.2.1 PostgreSQL . 14
3.2.2 Node.js . 14
3.2.3 NPM . 14
3.2.4 Express.js . 15
3.2.5 Knex.js . 15
3.2.6 PrimeNG . 16

3.3 Database . 16
3.3.1 Data & Scheme . 16
3.3.2 Setup . 16

3.4 API . 19
3.5 Front-End . 20

3.5.1 User Interface . 20
3.5.2 Data Service . 22
3.5.3 Datatable Component . 22

3.6 Deployment . 24

4 Conclusion and Outlook 26

Bibliography 27

iv

Chapter 1

Introduction

Since the early 1990s, web content evolved from text-based, static websites to
the highly dynamic and interactive web applications we are used to today; es-
pecially since the rise of AJAX (Asynchronous JavaScript +XML). Common code
pieces, patterns and structures were collected into frameworks and libraries
to increase efficiency and maintainability. Naturally, with the acceleration of
webdevelopment, lots of new frameworks, libraries andweb technologieswere
created to accommodate the needs of both users and developers. In particu-
lar JavaScript-based frameworks and libraries have been entering the market
at such a frequency that jokes (e.g. a website called “Days since last JavaScript
framework” [5]) and blog entrieswith titles similar to “100+ JavaScript frame-
works” [30] emerged in the developer community, but also serious criticism
of the status quo (e.g. “YAFS” – Yet Another Framework Syndrome [40]). Ad-
ditionally, developers and team leaders must take extra care when selecting a
tech stack for a product. Picking the wrong framework might waste time (and
thereforemoney) if the developers are not used to it or its underlying language
or if changing to another one becomes necessary. The later this happens in the
development process, the higher the costs will be. It is therefore necessary to
take some time to review the advantages and disadvantages of various frame-
works as well as the requirements for the desired application to find a good fit
and save time andmoney.

This thesis aims to help with that process by evaluating the three most widely
spread front-end frameworks–Angular,React andVue.Oneof the frameworks
is then used for developing a website displaying data from the Android Device
Security Rating.

A few requirements were given for the website:

The data from the security rating should be listed in tabular form.

The interface should provide common filter functionality, e.g. filtering by
vendors or models.

The applied filters should be represented in the URL to allow the user to
share particular views.

The website should be fully responsive.

Another requirement that arises implicitly: The website should be able to han-
dle large amounts of data, as the data set will continuously grow,meaning that
the user should not notice any delays while filtering or navigating.

In the first chapter of the thesis, a quick overview of the frameworks is given,
and the evaluation process and its results are described. The second chapter
contains a bottom-up description of the most important implementation as-
pects of the practical part of this thesis.

1

Chapter 2

Evaluation

2.1 Methodology

To collect relevant criteria, literature on (web) applications and their compar-
isonmethodswere studied. The ideawas to identify common criteria through-
out the studies, consolidate them and use them for evaluating the frameworks.
The following section contains brief descriptions of the literature including the
found attributes and the resulting selection of criteria along with their defini-
tions and rationale.

2.2 Literature

Mairiza et al. [22] conducted a literature studyonnon-functional requirements
(NFRs), resulting in an extensive catalogue of NFRs. The complete list spans
over 114 NFR types, which is why only the “most commonly considered NFRs”
are listed here:

Performance (e.g. response times, resource utilization),

Reliability (consistency, maturity, fault tolerance),

Usability (user friendliness, learnability),

Security (authentication, confidentiality), and

Maintainability (testability, analysability).

Villamor et al. [9] defined a comparison model for agile web frameworks (full
stack web frameworks). As the selected front-end frameworks do not operate
on the full stack, not all of the criteria are applicable. Relevant criteria are:

Presentation (automatic generation of basic representation, international-
ization supported, etc.),

Security (static typing, user authentication, escaping mechanisms, etc.),

Usability (development experience),

Testing (support for various types of testing),

Service Orientation (e.g. REST support), and

Adoption (community, maturity, etc.).

Shan and Hua [37] categorized Java web frameworks by their type (e.g. com-
ponent framework) and noted a few basic design principles a web application
framework should follow. Additionally, they noted some reasons why a few of
them have becomemore dominant on the market than others.

2

2 Evaluation 3

Simplicity – usage of the framework should require less and simpler code

Consistency (e.g. of components and conventions)

Efficiency – applications should be performant and scalable

Integration – with existing solutions

Reusability – constructs (e.g. components) should be reusable

Non-intrusive – HTML/markup should not be polluted with other seman-
tics

Diagnosis – diagnostics and debugging information

Development tools – “maximum tool support with minimum dependency
on special tools”

Additional factors: Community, Standardization, Documentation, Tool in-
tegration, Vendor endorsement, Ease of use

Gizas et al. [11] evaluated JavaScript frameworksusingcodequalitymetrics (e.g.
lines of code and complexity metrics) and performed validation and perfor-
mance tests with various tools:

Active community (mentioned, but not analyzed)

Quality (i.e. size, complexity andmaintainability of the framework code)

Validity (errors)

Performance

In contrast to other comparisons, the focus lies on the code quality of the
framework itself and not on the functionality or non-functional properties
it provides to its users. Nonetheless, a complex framework that is hard to
maintain is error-prone and its development more likely to be slower or even
discontinued—which in turn affects the quality of the application developed
with it.

2.3 Evaluation Criteria

Mairiza et al. [22] provided a good basis for the selection with the most com-
monNFRs they had identified in their literature review. In fact,most of the cri-
teria found in other literature are either the same, fall into the five categories
or are in between. The five categories were then used as a rough classification
and some others were used as “sub-criteria” or metrics. In the following sec-
tions, all categories and theirmetrics are described in detail. It should be noted
that not all metrics can be determined irreproachably and that the aim is not
to rank frameworks from best to worst, but merely to give an overview of the
main factors that might influence the selection of a framework for a project.

Performance Both speed (P1) and application size (P2) determine perfor-
mance, which is a decisive factor in whether people use an application or
not. For the comparison of speed and (transfer) size, the results of the “js-
framework-benchmark” [21] were used, as it measures the performance of
frameworks using data table operations—which corresponds well to the in-
tended use case.

2 Evaluation 4

Reliability Frameworks that are supported by large organisations (R1) are
less likely to be discontinued, especially if they use them for their own applica-
tions (e.g. Facebook using React [20]).Regular updates, fixes, security patches
(R2) and new features keep the framework secure and up to date. A dedicated
releasepolicydescribing release cycles andversioningpracticesmakesupdates
more predictable. The last point is maturity (R3): a framework that has been
developed for multiple years and is used in major applications can be consid-
ered as “mature” andmore reliable than newcomers.

Maintainability Documentation (M1) is the basis for developing and main-
taining anapplicationwith a framework. Besides the regular documentationon
thewebsite, this also includes tutorials, demo applications and other resources
such as books and courses. Since it would go beyond the scope to assess the
quality of all these resources, this criterion is assessed on the basis of quantity.
Tooling (M2) includes every tool and feature that facilitate the development
andmaintenance of an application, e.g.:

support for various testing types and frameworks,

IDE support, e.g. syntax highlighting and plugins for common IDEs
(Eclipse, IntelliJ, Visual Studio), and

other forms of supporting development tasks, e.g. browser extensions.

Usability The steepness of the learning curve (U1) influences how quickly
developers can familiarise themselves with a framework. A steep curve can
make itharder tofinddevelopers, especially experts, orprolong theonboarding
process. Even though learning something is a highly subjective matter, some
things can be observed:

Is it necessary to learn additional, possibly unusual technologies to use the
framework?

Does the framework provide information about best practices, project
structure, etc.; anything that facilitates the learning process and leaves less
room for error?

Documentation (M1) and community (U2) are two other factors that influ-
ence the learning curve.

A large community (U2) makes it easier to get answers on specific questions
and find resources such as tutorials, projects, etc. This criterion is measured
by the number of GitHub stars and StackOverflow questions to get a sense of
the number of people interested in or working with the framework, as well as
the presence of other forms of community such as events, conferences, and fo-
rums.

It should be noted that maintainability and usability are closely related in this
context. For example, good documentation and good developer tools improve
the maintainability, but also the usability of a framework. Conversely, a large
community improves developer experience, but alsomakes it easier to find so-
lutions to problems; or a moderate learning curve makes the framework com-
fortable to use at the beginning, but also makes it easier to hire and train new
developers for existing projects.

2 Evaluation 5

Security A security policy (S1) describes how the framework maintainers
handle security issues, how developers can report vulnerabilities, and it could
even provide a financial incentive for finding vulnerabilities. The framework
could (and should) also have built-in protection (S2) against common threats
or at least guidelines (S3) for developers on how to secure their application.

2.4 Frameworks

Before the frameworks are evaluated in detail, a brief introduction is given for
each framework, highlighting the key concepts.

2.4.1 Angular

Angular or Angular 2+ is a cross-platformTypeScript-based front-end frame-
work maintained and developed by Google and its community. Its predecessor
AngularJS was released back in 2010, but the framework was rewritten from
scratch and released again in 2016 [3]. Its basic building blocks are components
consisting of a TypeScript class, an HTML template and CSS styles. The tem-
plate can be extended with special syntax that enables multiple features:

Interpolation: Fields from the class can be inserted into the template and
are automatically update when changes are made.

Property Binding: HTML attributes, e.g. id or class, can be bound to a field
in the TypeScript class, which also allows for dynamic changes.

Event Binding: similar to Property Binding, except that a specific event
(e.g. click, keystrokes) triggers the execution of the specifiedmethod in the
component.

Directives: special classes that change the behaviour or appearance of
HTMLelements (attribute directives, e.g. NgClass,NgModel) or add and re-
move DOM elements (structural directives, e.g. NgIf, NgFor)

Figure 2.1 and the code in listings 2.1, 2.2 and 2.3 show a minimal example in-
cluding the above-mentioned features. The small applicationprovides abutton
that dynamically appends exclamation marks to the displayed sentence. If the
number of exclamationmarks exceeds 3, a second sentence appears.

Figure 2.1: Angular example application.

2 Evaluation 6

Listing 2.1: app.component.ts
1 import { Component } from '@angular/core';
2
3 @Component({
4 selector: 'my-app',
5 styleUrls: ['./app.component.css'],
6 templateUrl: './app.component.html',
7 })
8 export class AppComponent {
9 name: string = 'Sparta';
10 color: string = 'red';
11 exclamationCount: number = 0;
12
13 addExclMark() {
14 this.name += '!';
15 this.exclamationCount++;
16 }
17 }

Listing 2.2: app.component.html
1 <p [style.color]="color">
2 This is {{ name }}
3 </p>
4 <p *ngIf="exclamationCount > 3"
5 >No, this is Angular!
6 </p>
7 <button (click)="addExclMark()">
8 Add exclamation mark
9 </button>

Listing 2.3: app.component.css
1 p {
2 color: black;
3 }

2 Evaluation 7

Listing 2.4: React example code.
1 import React from "react";
2 import ReactDOM from "react-dom";
3
4 class App extends React.Component {
5 state = {
6 name: "Sparta",
7 exclCount: 0,
8 nameColor: "red"
9 };
10
11 addExclMark() {
12 this.setState((prevState) => ({
13 name: (prevState.name += "!"),
14 exclCount: prevState.exclCount + 1
15 }));
16 console.log(this.state.exclCount);
17 }
18
19 render() {
20 return (
21 <div>
22 <p style={{ color: this.state.nameColor }}>
23 This is {this.state.name}
24 </p>
25 {this.state.exclCount > 3 && (
26 <p>
27 No, this is React!
28

29 </p>
30)}
31 <button onClick={this.addExclMark.bind(this)}>
32 Add exclamation mark
33 </button>
34 </div>
35);
36 }
37 }
38
39 ReactDOM.render(<App />, document.getElementById("container"));

2.4.2 React

LikeAngular,React is supportedbya large corporation (Facebook) and its com-
munity. It was first used in 2011 and released as an open source project in 2013
[34]. Thedifference to theother two frameworks is thatReact is “only” a front-
end JavaScript library responsible for rendering UI elements. Nevertheless, it
was still considered for this comparison because its large ecosystem makes it
equally powerful.

React uses so-called React elements to build the user interface. These are cre-
ated with JSX (JavaScript syntax extension) and are rendered into the DOM
nodes. Components in React are not a composition of logic, template and style
files like in Angular, but essentially JavaScript functions that return React ele-
ments. To illustrate this, listing 2.4 contains the sample application from be-
fore, written in React. Instead of manipulating the DOM directly, React uses a
concept called virtual DOM. If something changes, the previous virtual DOM
and the changed one are compared using an efficient algorithm so that React
only needs to update the changed elements and not the entire DOM tree, which
speeds up the whole process significantly.

2 Evaluation 8

Listing 2.5: Vue example code.
1 <template>
2 <div id="app">
3 <p v-bind:style="{ color: nameColor }">This is {{ name }}</p>
4 <p v-if="exclCount > 3">No, this is Vue!</p>
5 <button v-on:click="addExclMark()">Add exclamation mark</button>
6 </div>
7 </template>
8
9 <script>
10 export default {
11 el: "#app",
12 data() {
13 return {
14 name: "Sparta",
15 exclCount: 0,
16 nameColor: "red",
17 };
18 },
19 methods: {
20 addExclMark: function () {
21 this.name += "!";
22 this.exclCount++;
23 },
24 },
25 };
26 </script>
27
28 <style>
29 p {
30 color: black;
31 }
32 </style>

2.4.3 Vue

Vue is another JavaScript framework that was released in 2014 [41]. Unlike the
other two frameworks, it is not supported by an organisation and is still de-
veloped by its creator Evan You and his core team members. Vue incorporates
concepts frombothAngular andReact. It uses a virtualDOMapproach and sup-
ports JSX, but also supports TypeScript and has directives similar to those in
Angular. Components are usually defined as single file components consisting
of a template, script and style part, as shown in listing 2.5.

2.5 Evaluation

This section evaluates the frameworks against the criteria defined in section
2.3, followed by a summary and rationale for choosing Angular for the imple-
mentation part of this thesis.

2.5.1 Performance

The following framework versions from the “js-framework-benchmark”
[21] were considered for the comparison: react-v16.8.6-non-keyed, angular-
v8.0.1-non-keyed and vue-v2.6.2-non-keyed.

2 Evaluation 9

Speed (P1): Overall, no significant difference in application speed could be
identified. Only Vue performs worse than the other two for the “select row”
implementation, and Angular has a slightly worse boot up time and memory
usage after page load.

Size (P2): The “total kilobyte weight” metric—the size of all resources loaded
into the page—is also more or less the same, with Vue being slightly more
lightweight than React and Angular.

2.5.2 Reliability

Supported by large organisations (R1): Both Angular and React are supported
by two large technology companies:Google andFacebook. Vue is developed and
maintained by a former Google employee and his core team and is funded by
sponsors [44].

Regular updates, release policy (R2):Unsurprisingly, all three frameworks re-
ceive regular updates including new features and bug fixes.

Angular’s documentation contains a detailed release policy that describes the
release cycle, support policy and even deprecation practices [2]. There is also
a roadmap that lists the features that are already in development or at least
planned.

React states its release policy in the FAQs and informs its users about new re-
leases and planned features in a blog [32, 33].

The Vue documentation on their website does not provide a special section
about releases and versioning, but the section “Release management” in a
GitHub read-me describes their schedule and LTS policy [42]. Planned fea-
tures and open tasks are published via GitHub Projects (a Kanban-like to-do
list) [45].

Maturity (R3): React is the oldest framework, with its first public release in
2013. Vue followed a little later, with the first commits to the official repository
at the end of 2013 and the first “named” release in 2014. With its first release
in 2016, Angular is the youngest of the three frameworks. Its predecessor An-
gularJS is not considered here, as it is fundamentally different from the new
Angular.

All three frameworks are used by major companies in enterprise-grade appli-
cations, for example Alibaba, GitLab (Vue) [6, 36], Facebook (React), Google
andMicrosoft (Angular) [27].

Measured by their age and their usage, all of the frameworks can be considered
as mature.

2.5.3 Maintainability

Documentation (M1): All three frameworks provide extensive documentation
on their websites, with Angular and React also providing sample applications
in a sandbox environment and Vue linking to external online course platforms
(some of which require a subscription).

2 Evaluation 10

For researching books, the search functionality on the website of the well-
known publisher O’Reilly Media was used [13]. As of April 2020, there were 47
books on Angular, 34 on React and 22 on Vue in their database. The database
also includes resources from other publishers such as Manning and Packt.

A similar search for courses was conducted on the websites of Coursera, one of
thebiggest educationplatforms.Here, the results had tobefilteredmanually as
the search function returned a lot of irrelevant results. In April 2020, 10 courses
were offered on Angular, 8 on React and none on Vue.

Tooling (M2): All three frameworks have a section on testing in their docu-
mentation. While Vue mainly gives recommendations on which framework to
use for which testing type, both Angular and React offer additional tips and
tricks for testing. Angular also includes the testing framework Jasmine in its
downloads (but using other frameworks is also possible).

For the evaluation of IDE support, three popular IDEs (Eclipse, IntelliJ and Vi-
sual Studio)were considered. Several third-party tools for all three frameworks
are offered on the Eclipse and Visual Studio marketplaces. Jetbrains provides
official tools for Angular and Vue for its IDE IntelliJ, and third-party tools are
available for React.

Similarly, when researching browser extensions, three popular browsers
(Chrome, Firefox, Edge) were considered. For Chrome, there are official ex-
tensions developed by Google, Facebook and the Vue team, as well as some
unofficial tools. In the Firefox marketplace, there are official tools for React
and Vue and some unofficial ones for Angular. The situation is different on
Edge, where there is only one official tool for React, the rest are supported by
third-party tools. Overall, all three frameworks seem to be well supported by
both official and third-party tools.

2.5.4 Usability

Learning curve (U1): For React and Vue, knowledge of HTML, CSS and
JavaScript is sufficient to get started. Angular uses TypeScript for its dynamic
parts, which may require some time to get used to.

Since React is only a UI rendering library, other libraries will most likely need
to be added to develop a full application. Vue is also stripped down to a min-
imum, but provides a few official core libraries to handle common tasks like
state management and routing. Angular can be considered a “batteries in-
cluded” framework that comeswith everythingneeded for development.While
the opt-in approach of React and Vuemakes no difference in the learning time
required—learning about routing in Angular or learning about an external li-
brary will take about the same amount of time—it requires an additional re-
search and selection process.

Community (U2): According to the number of GitHub stars and StackOverflow
questions in the table 2.1, React is the most popular framework overall among
the three selected. The numbers for Angular and Vue were a little surprising.
Vuehas a lot ofGitHub stars, but only a quarter of the questions of the other two
frameworks. This suggests that the user base is still quite small, despite its fa-
miliarity and the fact thatmany developers have “saved it for later”. Angular’s
numbers are the other way around: less than 60k GitHub stars, but over 200k
questions on StackOverflow might suggest a larger user base that just doesn’t

2 Evaluation 11

Table 2.1: Number of GitHub stars and StackOverflow questions, retrieved in
Feb. andMar. 2020.

Angular React Vue

GitHub stars 57.9k 144k 157k
StackOverflow
questions 205k 194k 51k

use GitHub asmuch—possibly enterprise users whomanage their repositories
elsewhere. Another possibility is that the numbers include (incorrectly tagged)
questions about the older AngularJS framework.

There are events, conferences andmeetings for all three frameworks, with An-
gular and React having slightly more to offer than Vue—not surprising given
the R1 criterion.

2.5.5 Security

Both Vue and Angular have a separate section in their documentation dedi-
cated to security, describing where to contact them, best practices (S3, guide-
lines) andwhatmeasures themaintainers have already taken against common
threats (S2, built-in protection) [1, 43]. Angular also refers to Google’s secu-
rity philosophy (S1, security policy), which includes a bug bounty program. For
React, no official policy or guidelines could be found, only a reference to Face-
book’s bug bounty program [31].

2.5.6 Summary

Table 2.2 summarizes the results of the comparison. The selected criteria high-
lights the subtle differencesbetween the frameworkswell, andoverall, all three
can be considered mature, stable and well suited for the task at hand. Ulti-
mately, Angular was chosen for developing the application, as it seems to offer
the clearest structure and documentation from the perspective of a new de-
veloper (there was no previous noteworthy experience with any of the frame-
works) withminor downsides in terms of size and speed compared to the other
frameworks.

2 Evaluation 12

Table 2.2: Overview of the results (++ very good, + good, o partial, – no sup-
port).

Angular React Vue

P1 Speed + ++ +

P2 Size + + ++

R1 Supported by large org. ++ ++ o

R2 Release policy ++ + o

R3 Maturity ++ ++ ++

M1 Documentation ++ ++ +

M2 Tooling + + +

U1 Learning curve + + +

U2 Community ++ ++ +

S1 Security policy + o –

S2 Built-in protection + – +

S3 Guidelines + – +

Chapter 3

Implementation of a Database View in
Angular

In thefirst sectionof this chapter, the idea andoverall architectureof the appli-
cation is explained. In the second section, any additional technologies used in
the project besides Angular are briefly introduced, along with the used version
and a few notes on their usage. In the remaining sections, the implementation
is explained step by step in a bottom-up way, focusing on the most important
parts.

3.1 Overview

The application needed to include the following parts:

1. A table showing the device data and the corresponding security rating re-
sults, and

2. functionality for filtering by vendors, models, and various attributes from
the rating.

Figure 3.1 shows a first mockup of those two parts. Additionally, the filter set-
tings should be represented in the URL to enable users to share views.

The application structure (Figure 3.2) is simple: a PostgreSQL database pro-
vides the data that can be accessed by the Express API running on a Node.js
server. The Angular application consists of a data service that accesses the API
and is injected into the data table component, to which it passes the data.

Figure 3.1: First mockup of the user interface.

13

3 Implementation of a Database View in Angular 14

Express APIPostgreSQL database

Angular application

Datatable

Data Service

Figure 3.2: Application overview.

3.2 Complementary Technologies

3.2.1 PostgreSQL

PostgreSQL is a free and well-known DBMS released in 1996 [28]. The setup
and schema is described in the section 3.3. In this implementation, version 12.3
was used.

3.2.2 Node.js

Node.js [23] is a JavaScript runtime environmentused for creatingWeb servers,
allowing developers to write a complete web application in a single language.
Version 12.6.3 was used, which was the LTS version when the application was
implemented.

3.2.3 NPM

NPM [25] is a package manager included by the Node installation that auto-
mates installing and updating the libraries and frameworks used in a project.
The website npmjs.com allows searching for packages and provides informa-
tion about dependencies, versions, download numbers, links to the reposito-
ries etc. Version 6.14.4 was used in the project. Although it is a practical and
widely used tool, there are some security issues that have come up in the re-
search for this thesis that developers should be aware of:

Typo-squatting: Packages containingmalicious codewerenamedsimilar after
popular packages, which led to accidental usage of the wrong package [24].

Module Hijacking: Lots of maintainers have or had very weak credentials,
which affected thousands of packages—including top packages like react,
react-dom, express or mysql [38]. In another incident, malicious code was re-
leased in a popular package after the account of its maintainer was hijacked
[35].

3 Implementation of a Database View in Angular 15

SocialEngineering: In ablogpost, a developer described away thatwouldhave
allowedhim to steal data fromwebsites by contributing to open source projects
with seemingly harmless code (not an actual attack) [10]. In a different case,
the original author of a popular library (over two million weekly downloads)
did not have the time and resources anymore tomaintain it and gave it away to
another person. This person turned out to be a hacker and added code that stole
information from users’ cryptocurrency wallets [4, 39].

Tomitigate those threats, there are some things that can be done by the devel-
oper or have been done by NPM:

General: Automatic updates, especiallymajor releases, shouldbeprevented—
this might lower the risk of module hijacking and social engineering, as the
malicious version of a package could be detected and removed before it even
reaches the application through an update. Additionally, it ensures that all
developers on a team use the exact same versions of packages. This can be
achieved by either specifying versions without the typical semantic version-
ing range prefixes or by using the package-lock.json, which is automatically
generated after modifying the dependency tree and locks packages to a spe-
cific version [26]. At the same time, updates should be installed regularly—
especially security patches. The total number of dependencies should be kept
to a minimum—which is often easier said than done, especially when using
frameworks and libraries that depend on lots of other packages [17].

Typo-squatting: Skovoroda [38] showed that even well-known and well-
maintained packages are not safe from malicious intent. Still, using packages
from trustworthy sources and organizations that are regularly checked and
maintained is the safer bet. Special care should also be taken when installing
packages—ideally they should be looked up on npmjs.com, where the com-
mand to install them can be copy-pasted.

Module hijacking: Concerning the weak credentials, NPM introduced token
authentication instead of basic authentication headers, password rules and 2-
factor authentication [38].

SocialEngineering Besides theabovementionedmeasures likepreventingau-
tomatic updates and using less packages if possible, there is also the possibility
of creating a private npm repository and checking packages thoroughly before
adding them [17].

3.2.4 Express.js

Express [8] is a small web application framework written for Node.js and typi-
cally used for writing REST APIs (see section 3.4). Version 4.17.1 was used.

3.2.5 Knex.js

Knex.js [18] is a query builder for various database technologies, mainly in-
tended for usage with Node.js. It adds an additional layer of abstraction to SQL
queries, with twomain advantages:

3 Implementation of a Database View in Angular 16

Dynamic queries with conditions can easily be written in JavaScript syntax.

Knex makes it harder to write unsafe queries. The developer would have to
explicitly use the raw functions to do this.

A disadvantage is, of course, the extra layer that is not absolutely necessary,
especially not for simple queries (e.g. SELECT * from XY). A good compromise
would be using Knex for complicated queries, where the layer of abstraction
makes it easier to write and read and using template strings for simple queries.
In this project, Knex (version 0.21.5) was used throughout the whole API, both
for consistency and because the API is quite small.

3.2.6 PrimeNG

PrimeNG [14] is a large UI component library for Angular (also available for
React, Vue and JSF). At the beginning, the intentionwas to just try it andquickly
pull up a UI prototype with it, but it turned out to be useful and integrates well
with Angular. The components and templates can be viewed and tried out on
the showcase website [15]. It also contains the documentation and the source
code of the examples. In this project, version 10.0.0 was used.

3.3 Database

3.3.1 Data & Scheme

The data can be split into two parts:

Device data, e.g. manufacturer, model, Android version, firmware version
etc.

Attributes, e.g. False Acceptance Rate, Bloat Index etc.

In the beginning, the measurement and analysis of attributes just started,
meaning that not a lot of data was available and more attributes were added
later. Because of this, the front-endhad to be as dynamic as possible. Attributes
can be added to the database and will be displayed without touching the front-
end code. This will be explained in detail in section 3.5. During development,
the scheme of the test database looked like figure 3.3.

3.3.2 Setup

A full SQL-script for recreating the table and populating it with test data can
be found in the project files (config/database.sql). This section aims to explain
the creation of the data view that is sent to the front-end.

View The goal was to create a view similar to figure 3.4—displaying the at-
tributes and values for each device horizontally—which is alreadymore or less
the (unfiltered) table that should be displayed on the front-end.

To achieve this, the function “crosstab” [29] was used. It “tips” or “pivots”
the data, as shown in figures 3.5 and 3.6.

Listing 3.1 shows the inner part of the view creation query (and actual crosstab
query).

3 Implementation of a Database View in Angular 17

Table 3.1: Result of the query using the test data.

devid far frr sar bi aii ssti psr kbb sba fbe mus sus

1 0.1 true false false file
2 0.2 false false false file
5 0.3 false false false file

The first parameter of the crosstab function is a query string selecting the de-
vice ID, attribute name and measurement value from the respective joined ta-
bles. The ORDER BY 1 is important, as it makes sure that only values with the
same device ID are brought together. The second parameter contains a string
(dollar-quoted, which allows using unescaped single quotes within the string)
that defines the categories (i.e. the columns) of the resulting table. This could
also be written as “SELECT attname from attribute”. Here, the columns were
specified explicitly to ensure that the order is correct. Note that the order has
to be exactly the same as the one in the column definition below (AS t(...)). If
the second parameter was omitted and somemeasurements weremissing, the
values would be filled up from left to right, as shown in figures 3.7 and 3.8.

Using the test data, executing the query would result in the data shown in table
3.1.

To create the final view (Listing 3.2), this data is then joinedwith the result of a
query selecting various device information. Both queries required selecting the
device ID; to avoid the duplicate “USING(devid)” is used instead of “ON devid”
in the join.

oem

PK oemid: serial primary key

oemname: varchar(50)

aospversion

PK versionid: serial primary key

version: varchar(10)

apinumber: integer

soc

PK socid: serial primary key

socname: varchar(50)

device

PK devid: serial primary key

devname: varchar(50)

FK oem: integer references oem(oemid)

model: varchar(50)

FK aosp_v: integer references aospversion(versionid)

FK soc_id: integer references soc(socid)

releasedate: date

sec_updaterate: varchar(50)

updatesuntil: date

firmwareversion

PK firmwareid: serial primary key

FK dev_id: integer references device(devid)

buildstring: varchar(80)

patchlevel: date

attribute

PK attid: serial primary key

attname: varchar(50)

FK category_id: integer references category(categoryid)

description: varchar(255)

FK type: integer references type(typeid)

category

PK categoryid: serial primary key

categoryname: varchar(50)

measurements

PK m_id: serial primary key

FK dev_id: integer references device(devid)

FK firmware_id: integer references firmwareversion(firmwareid)

FK attribute_id: integer references attribute(attid)

mvalue: text

type

PK typeid: serial primary key

typename: varchar(50)

Figure 3.3: Database scheme.

3 Implementation of a Database View in Angular 18

device 1 id device 1 data 1 device 1 data 2 attribute 1 attribute 2 ...

device 2 id device 2 data 1 device 2 data 2 attribute 1 attribute 2 ...

Figure 3.4: Intended layout of the view.

device 1 attribute 1

device 1 attribute 2

device 2 attribute 1

device 2 attribute 2

Figure 3.5: Original table.

device 1 attribute 1 attribute 2

device 2 attribute 1 attribute 2

Figure 3.6: Pivoted table.

Listing 3.1: Part of the view creation query.
1 ...
2 SELECT * FROM crosstab(
3 'SELECT f.dev_id, a.attname, m.mvalue
4 FROM firmwareversion as f
5 JOIN measurements as m
6 ON f.firmwareid = m.firmware_id
7 JOIN attribute as a
8 ON a.attid = m.attribute_id
9 ORDER BY 1',
10 $$values ('far'), ('frr'), ('sar'), ('bi'), ('aii'), ('ssti'),
11 ('psr'), ('kbb'), ('sba'), ('fbe'), ('mus'), ('sus')$$
12)
13 AS t(devid int,
14 far text,
15 frr text,
16 sar text,
17 bi text,
18 aii text,
19 ssti text,
20 psr text,
21 kbb text,
22 sba text,
23 fbe text,
24 mus text,
25 sus text
26)
27 ...

devid attribute 1 attribute 2

1 0.1 0.2
2 0.3

Figure 3.7: Exemplary query result with correct column definition.

3 Implementation of a Database View in Angular 19

devid attribute 1 attribute 2

1 0.1 0.2
2 0.3

Figure 3.8: Exemplary query result with incorrect column definition.

Listing 3.2: Final view query.
1 create view data as
2 WITH ct AS (-- crosstab query from listing 3.1 --),
3 device_data as (
4 SELECT d.devid, o.oemname, d.model, d.devname, to_char(d.releasedate,
5 'YYYY-MM') as releasedate, s.socname, a.version,
6 to_char(f.patchlevel, 'YYYY-MM-DD') as patchlevel
7 FROM device d
8 JOIN firmwareversion f
9 ON d.devid = f.dev_id
10 JOIN soc s
11 ON d.soc_id = s.socid
12 JOIN oem o
13 ON o.oemid = d.oem
14 JOIN aospversion a
15 ON d.aosp_v = a.versionid
16)
17 SELECT *
18 FROM device_data dd
19 JOIN ct
20 USING(devid);

3.4 API

This section describes the purpose of the REST API endpoints (see
routes/api.js).

/totalRecords Since the table is lazy-loaded, this query fetches the total data
count for displaying the correct number of pages at the bottom of the table.
It is executed once while initializing the page in the ngOnInit() method, one of
Angular’s lifecycle hooks.

/models This query returns all device models for initializing the model drop-
downfilter after selecting one ormoremanufacturers.Multiplemanufacturers
must be separated by a dot.

/attributes All currently available attributes are fetched and used for generat-
ing the table header aswell as the advancedfilters (see section 3.5.3 for details).
The response consists of the attribute name (which is actually the abbreviation
of the attribute, e.g. ‘far’), the description (the full name) and the type of the
attribute (here ‘boolean’, ‘numeric’ or ‘other’).

/data/:column This query returns the values for a specific column. It is used for
initializing the manufacturer dropdown filter and the non-numeric attribute
filters.

3 Implementation of a Database View in Angular 20

/data This is themainquery that actually fetches thedevice andmeasurement
data. First, the basic parameters not related to the data are processed ([’page’,
’rows’, ’sortBy’, ’order’, ’show’]). If some of them are not specified, it will fall
back to the default values specified at the top of api.js. Then, a Knex database
query builder is created and for every attributefilter, a corresponding ‘WHERE’
clause depending on the filter’s properties is added. The query should return
both the total count of the resulting data and the data itself. For this to work,
the created query has to be cloned and executed twice: once as a count query
and once as a select query.

3.5 Front-End

3.5.1 User Interface

Layout The interface is obviously quite simple: a table and a place for thefilter
functionality. Two variations were tried out:

1. Sidebar to the left of the table/on the left page border: Similar to the sidebar
on e.g. Amazon, where it works well – but takes up toomuch space in com-
bination with a table that is likely to grow in width. (see Fig. 3.1 in section
3.1)

2. Filter box above the table: The version that was chosen (see Fig. 3.9), as it
mitigates the width problem.

The colors and the navigation bar font were taken from the Android Device Se-
curitywebsite. Only sans-serif fontswere chosen, as these tend togenerate less
“visual noise”. For the same reason—and because they do not significantly in-
crease the speed or accuracy when using the table [7]—the often seen “zebra
stripes” in tables were omitted. Instead, a highlighting effect when hovering
over the rows should help the user navigate and orientate in the table. Icons
were kept to aminimum, also to avoid visual clutter: arrows to indicate sortable
columns and dropdowns, an Android symbol to save some space in the Android
version column as well as crosses and check marks for boolean values. As the
names of the attributes tend to be quite long, abbreviations were used for the
table header. In the “Advancedfilters” tab, the full name is displayed. Still, this

Figure 3.9: Final interface showing the collapsible filter box and the data table.

3 Implementation of a Database View in Angular 21

Figure 3.10: Mobile UI.

leaves some space for improvement: To help with the abbreviations, tool tips
for the table header could be implemented to avoid unnecessary tab switching
in the filter section. Because the height of the tablemight require scrolling, es-
pecially if the number of shown entries per page is increased, the table header
is fixed.

Filter functionality The filters were divided into two groups:

Basic filters: Filtering bymanufacturer andmodel; also the option to toggle
attribute columns.

Advanced filters: divided into three groups, “boolean” (is attribute X
present or not), “numeric” (min-max filters) and “other” (drop-down
menu). This filter type is, as mentioned before, a field in the database table
of attributes and is used for dynamically generating the UI filter compo-
nents, in case more attributes are added to the database (see section 3.5.3).

Responsiveness Displaying tabular data on mobile screens poses a particu-
larly difficult challenge and the solution depends on the underlying data and
use case. A few possibilities are [16, 19]:

Downsizing the table by leaving out somedata: not applicable here, because
all the data should be available onmobile devices.

Horizontal scrolling: possible, but not optimal since the data is likely to
grow in width.

Flipped table (header as the left fixed column) combined with horizontal
scrolling: makes it possible to compare about two entries in this case.

Transformed: the option that was chosen – the rows are transformed into
blocks (see Fig. 3.10) stacked on top of each other, which does not require
horizontal scrolling.

3 Implementation of a Database View in Angular 22

3.5.2 Data Service

The data service (data.service.ts) is an additional layer between the datatable
component and theAPI, providing functions to fetch andpre-process data. The
service is injected into the datatable component using Angular’s dependency
injectionsystem. InsteadofdirectlymakingHTTPrequests, thedatatable com-
ponentdelegates this task to thedata service,which separatespresentationand
data access a bit more.

3.5.3 Datatable Component

The datatable component (datatable.component.ts, datatable.component.html) con-
tains the filter functionality and the actual table displaying the data. The main
challenge was to make the generation of the filters and the table as dynamic
as possible, as it was not known how many attributes might be added in the
future. To achieve this, the componentmakes use of Angular directives for dy-
namic generation of HTML elements.

To aid understanding, this section describes the individual parts of the com-
ponent and their relationships mostly by example.

Columns

The columns are separated into two categories:

1. baseCols, which contain the basic information about a device (manufacturer,
model, release date, etc.) and are statically defined in the component (as-
suming that they will not change much in the future), and

2. attributes, which are initialized by fetching the relevant data from the
database in the ngOnInit()method. Thismethod is an Angular lifecycle hook
and should be used for initialization tasks that go beyond setting a few
properties (like in a constructor).

Filters

For the baseCols, two dropdown filters were implemented: one for selecting
a manufacturer and one for selecting a specific phone model (depending on
themanufacturer). Additionally—as the table was already quite broad and will
probably grow—amenu for selecting the displayed attribute columns was im-
plemented.

The advanced filters are represented by the attributes array in the component,
which is initialized in the ngOnInit()method.With the ngFor structural directive,
a set of HTML elements is generated for each attribute. Within that container,
a div element containing the corresponding form elements is generated using
the ngIf directive for each filter type (boolean, numeric, other).

Dropdownfilters Listing3.5 shows the tag for themanufacturerfilter. All other
dropdown filters work in the same way and will not be explained separately.
The p-multiSelect tag is a PrimeNG component for creating dropdownmenus. It
is defined as follows:

3 Implementation of a Database View in Angular 23

Listing 3.3: The surrounding container with the ngFor directive. Also visible
here: the usage of ngIf for filtering out columns that should not be
displayed.

1 <ng-container *ngFor="let a of attributes">
2 <div class="p-col-12 p-lg-3 p-md-6"
3 *ngIf="selectedColFields.includes(a.attname)">
4 ...

Listing 3.4: Part of the div element for the boolean filter.
1 <div *ngIf="a.typename === 'boolean'">
2 <p-selectButton ...

The #dropdownFilter selector is applied to all dropdown filters and makes it
possible to query all elements with that selector from the DOM and pro-
grammatically change them. This is used for resetting the filters in the
function resetTable().
Via the [options] directive, the options of the dropdown have to be provided
as an array. As there are multiple dropdowns in the application, an object
named filterOptionswith the field names as the keys and the options arrays
as the values was created in the TypeScript file.

The option [filter] specifies if the dropdown items can be filtered via a
search bar—here it was deactivated.

(onChange) calls the function provided to it after the selected value(s) of
the dropdown have changed. Here, the function fetchModels() is called,
which fetches the phone models for the selected manufacturer(s) from the
database, provides them to the filterOptions['model'] array and also activates
the (initially disabled) dropdown filter for the models.

The provided [(ngModel)] contains the result: the selected manufacturers.
Similar to the filterOptions object, a filterNgModel object was created, which
contains the field names and the respective selected filters. Two-way data
binding is applied to that object with the [()] syntax (“banana in a box”),
meaning that it will be updated when changes are applied to the DOM el-
ement and, vice-versa, the DOM element will be updated when the under-
lying model changes. This is especially relevant for sharing views, as the
dropdown model will be set based on the values in the URL and not based
on user input.

Boolean and numeric filters For the boolean filters, the PrimeNG select but-
ton is used, allowing the user to select true, false or both. The usage of the
options and two-way data binding is analogous to the dropdown filter(s). The
multipleoption allows selecting multiple values.

Listing 3.5: Manufacturer filter.
1 <p-multiSelect #dropdownFilter id="oemname"
2 [options]="filterOptions['oemname']" appendTo="body"
3 [filter]="false"
4 (onChange)="fetchModels()"
5 [(ngModel)]="filterNgModel['oemname']">
6 </p-multiSelect>

3 Implementation of a Database View in Angular 24

Listing 3.6: Boolean filter.
1 <p-selectButton
2 [options]="filterOptions[a.attname]"
3 multiple="multiple" appendTo="body"
4 [(ngModel)]="filterNgModel[a.attname]">
5 </p-selectButton>

Listing 3.7: Numeric filter.
1 <p-inputNumber
2 [(ngModel)]="numNgModel['min-' + a.attname]"
3 [minFractionDigits]="2"
4 placeholder="Min"
5 mode="decimal">
6 </p-inputNumber> -
7 <p-inputNumber [(ngModel)]="numNgModel['max-' + a.attname]"
8 [minFractionDigits]="2"
9 placeholder="Max"
10 mode="decimal">
11 </p-inputNumber>

For the numeric filters, two formfields (only allowing numerical input) for the
minimum and the maximum value are provided. Again, a ngModel is used for
handling the data input. The option [minFractionDigits]="2"makes sure that al-
ways at least two fractiondigits aredisplayed. Themode decimaldefines the type
of number input (the other option would be currency). All other filters are rep-
resented as a drop-downmenu. If further filter types are required, they can be
added to the “type” table in the database and then used to create further div
elements containing the required elements similarly to the existing elements.

Fetchingdata Instead of loading data on every change,which could be slightly
annoying for the user (especially during typing in the numeric filters), the data
is only loaded in the function fetchRows() after clicking the “Confirm” button.

If the page was not just reloaded (otherwise the ngModels would be empty),
the function puts the data from the two ngModels into the query parameters
and uses router.navigate from the Angular Router to navigate to the URL (stay-
ing on the /datatable page) including these parameters. After that, the function
getData() fromthe injecteddata service is called,whichqueries thedata fromthe
API with the provided parameters. getData() will return the following (also see
section 3.4): the number of total rows and the data for thefirst page, depending
on the selected rows per page.

Sharing views Passing the filter via the URL enables users to share particular
views of the table. For this towork,multiple functions are called from ngOnInit()
that access the query parameters and set the corresponding fields and ngMod-
els based on those parameters.

3.6 Deployment

To set up a CI/CD pipeline for GitLab, the following has to be done: a runner
has to be registered for the project, and a .gitlab-ci.yml file has to be created

3 Implementation of a Database View in Angular 25

Listing 3.8: .gitlab-ci.yml
1 stages:
2 - build
3
4 build:
5 stage: build
6 image: node:12
7 script:
8 - npm install -g @angular/cli
9 - npm install
10 - npm run build-prod
11 artifacts:
12 paths:
13 - dist

and put into the root location of the repository. This section describes the con-
tent of the .yml file that was used in the project. More details about the CI/CD
functionality of GitLab can be found in [12]. The meaning of the commands in
the file in listing 3.8 is as follows:

stages:With that keyword, groups of tasks can be defined. In this case, only
the build stage was defined, but it could, for example, also contain a test or
deploy stage.

The word build is the name of the task. The keyword stage states to which
stage it belongs and image defines the Docker image the CI/CD job will run
on – in this case, an official Node.js image with version 12 is used.

The script part defines the commands that should be executed after a com-
mit. Here, the NPM commands for installing packages and creating a pro-
duction build are listed.

The artifacts keyword tells the pipelinewhichfiles should be saved and sent
to GitLab after finishing the job. Here, the “dist” folder, which contains the
final build, is defined as an artifact.

Chapter 4

Conclusion and Outlook

The thesis gave an overview over the threemost popular front end frameworks
Angular, React and Vue, and demonstrated the implementation of a small web
applicationwithAngular.While there are somedifferences in termsof features,
syntax, and structure, overall, all three frameworks would have been suitable
for implementing the given application.

Angular on its own proved to be a fine choice, especially with regard to the
learning process and the clear structure. However, its “batteries-included”
philosophy also means it is shipping tools that are not always needed. For the
given implementation task, amuch smaller framework or even using Vanilla JS
would have been enough.

Additionally, a few other technologies and libraries were used during devel-
opment, which quickly added up and resulted in a larger application size and a
long list of dependencies. Theproblemwerenot somuch the“primary”depen-
dencies, but the number of libraries that they again depended on. The thought
that a lot of web applications have a similar number of or even way more de-
pendencies, combined with the security issues of the package manager NPM
mentioned in section 3.2, is unsettling, to say the least, and could be compared
to a house of cards.

In future work, it would be interesting to see a comparison between the three
analysed frameworks and younger, less established ones, especially regarding
their concepts and features. The application could, for example, be further im-
proved by refining the UI/UX of the filters (see section 3.5.1) and also by in-
tegrating the data table component into the existing Android Device Security
website.

26

Bibliography

[1] Angular. 2020. Angular - Security. Retrieved 03/17/2020 from https://a
ngular.io/guide/security.

[2] Angular. 2021. Angular versioning and releases. Retrieved 12/14/2021
from https://angular.io/guide/releases.

[3] Angular. 2016. chore(release): v2.0.0 proprioception-reinforcement.
(September 2016). Retrieved 12/14/2021 from https://github.com/angul
ar/angular/commit/ffe5c49c3ebb51d534a339e0d85a0aa7967923dc.

[4] Catalin Cimpanu. 2018. Hacker backdoors popular JavaScript library to
steal Bitcoin funds. ZDNet, (November 2018).

[5] 2021. Days Since Last JavaScript Framework. Retrieved 09/07/2021 from
https://dayssincelastjavascriptframework.com/.

[6] Nifty Software e.U. 2020. Alibaba - Made with Vue.js. Retrieved
08/07/2020 from https://madewithvuejs.com/alibaba.

[7] Jessica Enders. 2008. Zebra Striping: Does it Really Help? A List Apart,
(May 2008).

[8] Express.js. 2020. Express.js. Retrieved 03/29/2020 from https://express
js.com/de/.

[9] José Ignacio Fernández-Villamor, Laura Dı́az-Casillas, and Carlos Angel
Iglesias. 2008. A comparison model for agile web frameworks. In Pro-
ceedings of the 2008 Euro American conference on Telematics and Informa-
tion Systems, EATIS 2008, Aracaju, Brazil, September 10-12, 2008. DOI: 10.1
145/1621087.1621101.

[10] David Gilbertson. 2018. I’m harvesting credit card numbers and pass-
words from your site. Here’s how. Hackernoon, (January 2018).

[11] AndreasGizas, Sotiris P. Christodoulou, andTheodore S. Papatheodorou.
2012. Comparative evaluation of javascript frameworks. In Proceedings of
the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20,
2012 (Companion Volume). ACM, pp. 513–514. DOI: 10.1145/2187980.2188
103.

[12] GitLab Inc. 2020. GitLab CI/CD. Retrieved 09/04/2020 from https://docs
.gitlab.com/ee/ci/.

[13] O’Reilly Media Inc. 2020. O’Reilly - Search. (April 2020). Retrieved
04/04/2020 from https://www.oreilly.com/search.

[14] PrimeTek Informatics. 2020. PrimeNG - The Most Powerful Angular UI
Component Library. Retrieved 03/29/2020 from https://www.primefac
es.org/primeng/.

[15] PrimeTek Informatics. 2020. PrimeNG Showcase. Retrieved 03/29/2020
from https://www.primefaces.org/primeng/showcase/.

[16] Michał Jarosz. 2018. 5 Practical Solutions to Make Responsive Data Ta-
bles. Appnroll Publication, (September 2018).

[17] Patricia Johnson. 2019. 4 Steps Developers Should Take To Use npm Se-
curely. (December 2019). Retrieved 03/29/2020 from https://www.whit
esourcesoftware.com/resources/blog/npm-security/.

27

https://angular.io/guide/security
https://angular.io/guide/security
https://angular.io/guide/releases
https://github.com/angular/angular/commit/ffe5c49c3ebb51d534a339e0d85a0aa7967923dc
https://github.com/angular/angular/commit/ffe5c49c3ebb51d534a339e0d85a0aa7967923dc
https://dayssincelastjavascriptframework.com/
https://madewithvuejs.com/alibaba
https://expressjs.com/de/
https://expressjs.com/de/
https://doi.org/10.1145/1621087.1621101
https://doi.org/10.1145/1621087.1621101
https://doi.org/10.1145/2187980.2188103
https://doi.org/10.1145/2187980.2188103
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://www.oreilly.com/search
https://www.primefaces.org/primeng/
https://www.primefaces.org/primeng/
https://www.primefaces.org/primeng/showcase/
https://www.whitesourcesoftware.com/resources/blog/npm-security/
https://www.whitesourcesoftware.com/resources/blog/npm-security/

Bibliography 28

[18] Knex.js. 2020. Knex.js. Retrieved 03/29/2020 from https://knexjs.org/.
[19] James Knutila. 2014. Web Archive - Responsive Tables: Best Practices

and Examples. DevKit (Web Archive), (April 2014).
[20] Rafał Kostrzewski and Matt Warcholinski. 2021. 10 Famous Apps Using

ReactJS Nowadays. Brainhub, (March 2021).
[21] Stefan Krause. 2020. js-framework-benchmark. (February 2020). Re-

trieved 02/02/2020 from https://github.com/krausest/js- framework
-benchmark.

[22] Dewi Mairiza, Didar Zowghi, and Nur Nurmuliani. 2010. An investiga-
tion into the notion of non-functional requirements. In Proceedings of
the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland,
March 22-26, 2010. ACM, pp. 311–317. DOI: 10.1145/1774088.1774153.

[23] Node.js. 2020. Node.js. Retrieved 03/29/2020 from https://nodejs.org/e
n/.

[24] NPM. 2017. ‘crossenv’ malware on the npm registry. (August 2017). Re-
trieved 03/29/2020 from https://blog.npmjs.org/post/163723642530/cr
ossenv-malware-on-the-npm-registry.html.

[25] NPM. 2020. NPM. Retrieved 03/29/2020 from https://www.npmjs.com/.
[26] NPM. 2020. package-lock.json - A manifestation of the manifest. Re-

trieved 03/29/2020 from https://docs.npmjs.com/cli/v7/configuring
-npm/package-lock-json.

[27] Lalith Polepeddi. 2019. Made with Angular. (September 2019). Retrieved
08/07/2020 from https://www.madewithangular.com/categories/angul
ar/.

[28] PostgreSQL. 2020. PostgreSQL. Retrieved 03/29/2020 fromhttps://www
.postgresql.org/about/.

[29] PostgreSQL. 2020. tablefunc. Retrieved 03/29/2020 from https://www.p
ostgresql.org/docs/9.2/tablefunc.html.

[30] G. Prasad. 2014. 100+ JavaScript Frameworks for Web Developers. CSS
Author, (June 2014).

[31] React. 2020. How to Contribute - React. Retrieved 03/17/2020 from http
s://reactjs.org/docs/how-to-contribute.html#security-bugs.

[32] React. 2021. React blog. Retrieved 12/14/2021 from https://reactjs.org/bl
og/all.html/.

[33] React. 2021. Versioning Policy - React. Retrieved 12/14/2021 from https:
//reactjs.org/docs/faq-versioning.html.

[34] RisingStack. 2021. The History of React.js on a Timeline. (October 2021).
Retrieved 12/14/2021 from https://blog.risingstack.com/the-history-of
-react-js-on-a-timeline/.

[35] Ryadel. 2019. YARN vs NPM (vs pnpm) in 2019: comparison and verdict.
(July 2019). Retrieved 03/29/2020 from https://www.ryadel.com/en/yar
n-vs-npm-pnpm-2019/.

[36] Jacob Schatz. 2017. How we do Vue: one year later. GitLab Blog, (Novem-
ber 2017).

[37] TonyChao Shan andWinnieW.Hua. 2006. Taxonomyof JavaWebAppli-
cation Frameworks. In 2006 IEEE International Conference on e-Business
Engineering (ICEBE 2006), 24-26 October 2006, Shanghai, China. IEEE
Computer Society, pp. 378–385. DOI: 10.1109/ICEBE.2006.98.

https://knexjs.org/
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark
https://doi.org/10.1145/1774088.1774153
https://nodejs.org/en/
https://nodejs.org/en/
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry.html
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry.html
https://www.npmjs.com/
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://www.madewithangular.com/categories/angular/
https://www.madewithangular.com/categories/angular/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.postgresql.org/docs/9.2/tablefunc.html
https://www.postgresql.org/docs/9.2/tablefunc.html
https://reactjs.org/docs/how-to-contribute.html#security-bugs
https://reactjs.org/docs/how-to-contribute.html#security-bugs
https://reactjs.org/blog/all.html/
https://reactjs.org/blog/all.html/
https://reactjs.org/docs/faq-versioning.html
https://reactjs.org/docs/faq-versioning.html
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://www.ryadel.com/en/yarn-vs-npm-pnpm-2019/
https://www.ryadel.com/en/yarn-vs-npm-pnpm-2019/
https://doi.org/10.1109/ICEBE.2006.98

Bibliography 29

[38] Nikita Skovoroda. 2018. Gathering weak npm credentials. (May 2018).
Retrieved 03/29/2020 from https://github.com/ChALkeR/notes/com
mit/5b867f10302a677e63ac31ec37515c6d732ab3ad.

[39] Ayrton Sparling. 2018. I don’t know what to say. (November 2018). Re-
trieved 03/29/2020 from https://github.com/dominictarr/event-strea
m/issues/116.

[40] TasteJS. 2015. Yet Another Framework Syndrome (YAFS). (January 2015).
Retrieved 09/07/2021 from https://medium.com/tastejs-blog/yet-anot
her-framework-syndrome-yafs-cf5f694ee070.

[41] VueJS. 2014. Releases - vuejs/vue. (February 2014). Retrieved 12/14/2021
from https://github.com/vuejs/vue/releases?page=20.

[42] VueJS. 2021. Roadmap for the Vue.js project. Retrieved 12/14/2021 from
https://github.com/vuejs/roadmap#release-management.

[43] VueJS. 2020. Security | Vue.js. Retrieved 03/17/2020 from https://v3.vue
js.org/guide/security.html#reporting-vulnerabilities.

[44] VueJS. 2021. Sponsor Vue.js Development. Retrieved 10/13/2021 from htt
ps://vuejs.org/support-vuejs/.

[45] VueJS. 2021. Vue.js 3.2.0 - GitHub Project. Retrieved 12/14/2021 from htt
ps://github.com/vuejs/core/projects/4.

https://github.com/ChALkeR/notes/commit/5b867f10302a677e63ac31ec37515c6d732ab3ad
https://github.com/ChALkeR/notes/commit/5b867f10302a677e63ac31ec37515c6d732ab3ad
https://github.com/dominictarr/event-stream/issues/116
https://github.com/dominictarr/event-stream/issues/116
https://medium.com/tastejs-blog/yet-another-framework-syndrome-yafs-cf5f694ee070
https://medium.com/tastejs-blog/yet-another-framework-syndrome-yafs-cf5f694ee070
https://github.com/vuejs/vue/releases?page=20
https://github.com/vuejs/roadmap#release-management
https://v3.vuejs.org/guide/security.html#reporting-vulnerabilities
https://v3.vuejs.org/guide/security.html#reporting-vulnerabilities
https://vuejs.org/support-vuejs/
https://vuejs.org/support-vuejs/
https://github.com/vuejs/core/projects/4
https://github.com/vuejs/core/projects/4

	Abstract
	Acknowledgements
	Contents
	Introduction
	Evaluation
	Methodology
	Literature
	Evaluation Criteria
	Frameworks
	Angular
	React
	Vue

	Evaluation
	Performance
	Reliability
	Maintainability
	Usability
	Security
	Summary

	Implementation of a Database View in Angular
	Overview
	Complementary Technologies
	PostgreSQL
	Node.js
	NPM
	Express.js
	Knex.js
	PrimeNG

	Database
	Data & Scheme
	Setup

	API
	Front-End
	User Interface
	Data Service
	Datatable Component

	Deployment

	Conclusion and Outlook
	Bibliography

