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Abstract

A Personal Identity Agent (PIA) is a digital representative of an individual
and enables their authentication in the physical world with biometrics. Cru-
cially, this authentication processmaximizes privacy of the individual via data
minimization. The PIA is an essential component in a larger research project,
namely the Christian Doppler Laboratory for Private Digital Authentication in
the Physical World (Digidow). While the project is concerned with the over-
all decentralized identity system, spanning several entities (e.g. PIA, sensor,
verifier, issuing authority) and their interactions meant to establish trust be-
tween them, this work specifically aims to design and implement a PIA for An-
droid. The latter entails three focus areas: First, an extensive analysis of secret
storage on Android for securely persisting digital identities and/or their sensi-
tive keymaterial. Specifically, we are looking at the compatibility withmodern
cryptographic primitives and algorithms (group signatures and zero knowl-
edge proofs) to facilitate data minimization. Second, we reuse existing Rust
code from a different PIA variant. Thereby we analyze and adopt a solution for
language interoperability between the safer systems programming language
Rust and the JVM. And third, we strengthen the trust in our Android PIA imple-
mentation by evaluating the reproducibility of the build process. As part of the
last focus area we uncovered and fixed a non-determinism in a large Rust li-
brary and subsequently achieved the desired reproducibility of the Android PIA
variant.
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Kurzfassung

Ein Personal Identity Agent (PIA) ist ein digitaler Repräsentant einer Person
und ermöglicht dessen Authentifizierung in der physischen Welt durch Bio-
metrie. Entscheidend ist hierbei die Maximierung der Privatspähre der Per-
son mittels Datensparsamkeit. Der PIA ist eine essentielle Komponente in ei-
nem größeren Forschungsprojekt, nämlich dem Christian Doppler Labor für
Private Digitale Authentifizierung in der PhysischenWelt (Digidow). Während
das Projekt sichmit dem gesamten dezentralen Authentifizierungssystem be-
fasst, bestehend ausmehreren Entitäten (z.B. PIA, Sensor, Verifier und Ausga-
bestelle) und deren Interaktionen zum Schaffen von Vertrauen, widmet sich
diese Arbeit dem Design und der Umsetzung eines PIA für Android. Letzte-
res beinhaltet drei Schwerpunkte: Erstens, eine ausführliche Analyse zur Spei-
cherung geheimer Daten auf Android, um digitale Identitäten und/oder deren
vetrauliches Schlüsselmaterial sicher zu persistieren. Konkret betrachten wir
dabei die Kompatiblität mit modernen kryptographischen Primitiven und Al-
gorithmen (Gruppensignaturen und Zero-Knowledge-Proofs) zur Förderung
der Datensparsamkeit. Zweitens, verwenden wir bestehenden Rust-Quellcode
von einer anderenPIA-Variante. DadurchAnalysierenundVerwendenwir Pro-
grammierspracheninteroperabilität zwischender sichereren Systemprogram-
miersprache Rust und der JVM. Und drittens, stärken wir durch die Evaluie-
rung der Reproduzierbarkeit des Build-Prozesses das Vertrauen in unsere An-
droid PIA Implementierung. Als Teil des letzten Schwerpunktes haben wir in
einer großen Rust Bibliothek einen Nichtdeterminismus gefunden und beho-
ben. Dadurch wird in weiterer Konsequenz die Reproduzierbarkeit der Android
PIA-Variante erreicht.
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Chapter 1

Introduction

1.1 Motivation

An authentication process, entailing both identification – the action of claim-
ing a certain identity – and authentication – the action of verifying a claimed
identity – is a crucial part in many daily actions. Such a process takes place in
the physical world and/or in the digital one. We observe that a purely physi-
cal verification process requires carrying several documents with specific pur-
poses. E.g.

operating a car requires a driver’s license,

crossing a border requires a passport, and

enrolling in university (in Austria) requires a photo ID and a high school
graduation certificate (or similar).

On the surface level this trend of specific credentials for specific purposes is
evenmorepronounced in thedigital realm.Consider thatmostwebsitesor apps
require the creation (i.e. registration) of specific credentials per user. How-
ever, many registration and login procedures permit the use of single sign-on
(SSO) or federated identity management (FIM) processes. Common examples
include:

Many large platforms (e.g. Google, Facebook, or Apple) act as identity
provider in FIM solutions for numerous third party applications.

Additionally, government schemes also provide SSO functionality (e.g.
Austrian “Handy-Signatur” allows signing in to “Digitales Amt”, “Finan-
zOnline” and the public health portal) or even FIM (e.g. the electronic
IDentification,Authentication and trustServices (eIDAS)EU regulation en-
ables login with national government identities at other EUmember coun-
tries; each country is both identity provider and relying party).

Such identity systems vastly increase usability since a user only needs to re-
member a few core credentials.

Nowadays, most verification processes involve both the physical and digital
realm to some degree. Note that e.g.

a driver’s license is usually checked against a digital database,

in addition to checking a passport, a border agent commonly verifies that a
traveler is not on a blocklist and there is no active search warrant, etc.

This aspect of duality between the physical and digital realm for verification is
on the rise. One current prominent example for this are the certificate schemes
aroundCOVID-19used all over theworld,most ofwhich involve scannable bar-
codes1 that are digitally signed [75]. This increasingduality is the startingpoint
1E.g. the EU Digital COVID Certificate (EUDCC) uses a QR code, one specific type of barcode.

1



1 Introduction 2

for the vision of decentralized digital identities that can be used in the physical
world.

Authentication is generally classified into three different factors:

1. knowledge factor: something the individual knows, e.g. password or PIN,
graphical pattern;

2. ownership factor: something the individual has, e.g. smartcard, cell phone,
hardware security token (e.g. FIDO2);

3. inference factor: something the individual is or does, e.g. fingerprint, face,
retina/iris, voice pattern, gait.

The inference factor, especially the well-known fingerprint and face detection
biometrics, have high adoption rates and continue to rise. A study by Cho et
al. [29] showed that fingerprint detection is the most popular authentication
method. 88%-93% of study participants were in favor (multiple positive and
negative classificationswere possible). This was because “fingerprint is fast and
convenient to use with one hand” [29].

This master thesis is part of a larger research project, the Christian Doppler
Laboratory for Private Digital Authentication in the Physical World (Digidow).
Therefore we present an overview of the larger project vision along with spe-
cific motivation for the focus of this thesis.

1.1.1 Architecture

In the Digidow project we envision a system of decentralized digital identi-
ties for the physical world. Such a system involves multiple entities, a detailed
overview of the architecture is visualized in Figure 1.1. The main ones are:

A Personal Identity Agent (PIA) is a digital representative of an individual and
thus acts in their best interest during interactions with the other entities.

A Sensor is the interface from the physical world to the digital one. Itmainly
reports proofs of sensor measurements for individuals to their respective
PIAs.

A Verifier controls a (physical) service and thus grants access upon receipt
of a credential from a PIA.

An Issuing Authority (IA) issues digital identities (comprised of relevant at-
tributes) to PIAs.

Initially there are several boostrap processesmeant to establish static trust be-
tween some parties. This includes

the user initially enrolling themselves with their PIA,

the verifier establishing trust in IA and sensor by checking their respective
certificate or signature, and

both verifiers and sensors, optionally, registering themselves in public di-
rectories that facilitate accountability.

After an individual registered with an IA, their PIA receives a digital identity.
Alternatively, existing identities of the individual may be imported into their
PIA. Finally, the primary interaction between the PIA, verifier, and sensor can
take place to permit an individual access to a desired service:

1. The location tracking model of the PIA is following (and predicting) the
movement of the individual and thus aware of their physical whereabouts.
It uses that information to register biometrics to nearby sensors.
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2. Once the user is recognized, a sensor transmits a proof of sensor measure-
ment to the PIA.

3. The PIA combines this proof with a suitable credential, optionally employ-
ing a derived credential based on the original one (i.e. only revealing amin-
imum set of required properties), via a zero-knowledge proof (ZKP) and
submits both to the verifier.

After the verifier has checked the combination of the submitted credential and
the sensors’ proof of measurement, access is either granted or denied.

1.1.2 Biometrics and Usability

TheDigidowarchitecture is focusedaroundbiometrics, sinceall authentication
attempts start with sensors in the physical world. As such we gain the afore-
mentioned convenience that comes with the biometric authentication factor.

With regards to usability we also need to consider the need for interactions
between the individual and PIA. As an end goal we envision a PIA that makes
all decisions (in the best interest of the represented individual) on its own and
thus makes carrying a smartphone optional. However, we recognize that ini-
tially many decisions are going to require feedback from the individual. This is
a good fit for a PIA running on a mobile phone that can interact with its owner
via a UI. Thus thiswork is focused on implementing a PIA for Android, themost
widely adoptedmobile OS for end users. With continued adoption and usage of
such a smartphone based PIA we can also establish and increase trust in our
system, easing the transition to a more autonomous implementation running
on a remote system (e.g. in the cloud).

1.1.3 Decentralization and Privacy

Authentication in the physical world via biometrics can be trivially imple-
mented via a centralized approach based on biometrics databases maintained
by governments or big technology companies. Figure 1.2 sketches an outline
how such a centralized architecture, with our terminology, might look like.
However, such a centralized systemhas significant problems in the area of pri-
vacy and security in general, most notably among them:

Mass surveillance of all individuals enrolled in such a system is trivial due
to readily available biometrics.

Individuals may be censored by blacklisting their credentials for one or all
services offered by such a system, essentially violating the availability as-
pect from the perspective of an individual.

A (possible) breachof sucha largedatabasefilledwithpersonal information
is problematic onmany fronts andwould enable identity theft, stalking, etc.
by malicious individuals.

These deficiencies are the main reasons why the Digidow project envisions a
decentralized approach, granting individuals (via their PIAs) full autonomy
over their data. A high level architectural view of this vision can be seen in fig-
ure 1.3.

Hansen [62] defines privacy as “the right to informational self-determination”,
effectively enabling individuals to “control, edit, manage, and delete informa-
tion about themselves and decide when, how, and to what extent that information
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is communicated to others.” Further work by Deng et al. [34] also worked with
this definition and defined related terms and privacy properties. Their termi-
nology distinguishes between

hardprivacywith the goal of dataminimization, where data subjects provide
as little data as possible and

soft privacy, which assumes that data subjects have lost, or given up, con-
trol of personal data and rely on the honesty and competence of data con-
trollers.

Any excessive data that is not required for the functionality of an action is a
possible source ofmalicious or accidental data leakage. Thus, a keyprivacy goal
of Digidow is data minimization.

Unlinkability, one specific part of privacy, is defined by Pfitzmann and
Hansen [100] as “unlinkability of two or more items of interest (IOIs, e.g., subjects,
messages, actions, ...) from an attacker’s perspective means that within the system
(comprising these and possibly other items), the attacker cannot sufficiently distin-
guish whether these IOIs are related or not.” A straight forward implementation
of our architecture provides unique fingerprints, also called quasi-identifiers
in the literature, onmultiple levels. Among others, fingerprints can be found in
biometrics, cryptography and network protocols. Wherever possible, we want
to remove fingerprints and thus prohibit linkability per design.

Aswepreviously introduced in section 1.1, verification in thedigital realmcom-
monly happens via a FIM system. It is worth pointing out that our envisioned
decentralized identity system has similar convenience advantages as such SSO
and FIM solutions. All of the digital identities and attributes aremaintained by
the PIA and provided wherever appropriate.

1.2 Objectives and Approach

The main objective of this work is the development of a PIA running on An-
droid. Our general approach is adherence to secure development standards and
best practices. This entails several focus areas that are briefly introduced in this
section and preview the main contributions of this work.

1.2.1 Secret Storage on Android

A straight forward requirement for a PIA is the capability to store digital iden-
tities of the individual. Storing sensitive data should always be done with cau-
tion, preferably according to the security guidelines of the respective systemor
platform. We approach this focus area by analyzing both

the official APIs provided by the platform vendor Google and

taking a look at existing solutions by third parties.

We also present the basics of the Android securitymodel, an important prereq-
uisite for such an analysis.

1.2.2 Rust Integration for our Android app

In the Digidow project there is already an ongoing effort to develop a stan-
dalone PIA in Rust. We want to reuse existing work and, wherever possible,
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share the business logic with this standalone implementation. Rust is not an
officially supported programming language for Android apps2. Android app
development supports only Java and Kotlin as first-class programming lan-
guages. It follows that this work is also concernedwith programming language
interoperability and,more specifically, presents our approach to use Rust code
on Android apps.

1.2.3 Trust and Reproducibility

Several entities in ourDigidowarchitecture have a trust relationshipwith other
entities, meaning that they implicitly rely on the proper functioning of these.
By design a PIA stores all digital identities and performs extensive tracking of
the associated individual. Hence, the trust of the individual in their PIA is of ut-
most importance. Not every person is going to program their own PIA. In fact
weenvision that therewill be a reasonablenumberof opensource implementa-
tions that will be monitored closely by auditing efforts (e.g. driven by civil lib-
erty unions).We assume thatmost individuals are going to chose among these.
There are currently two planned variants of the PIA, namely:

An embeddedone runningon thepersonal smartphoneof the individual and

a standalone (i.e. remote) one that is hosted on a remote server, either run
by the individual themself or by a trusted (cloud) vendor (e.g. bank).

However, as famous work by Thompson [128] points out: Merely inspecting
source code is definitely not enough to create trust. An important step in bridg-
ing the gap between an open source implementation and the executable arti-
fact are reproducible builds. Thus we will investigate to what degree our An-
droid implementation of the PIA is reproducible and work towards achieving
this property.

1.3 Outline

Thismaster thesis is structured in the following chapters. After presenting the
overall vision of the Digidow project as motivation and specific objectives for
the Android PIA developed as practical component of this work in this chap-
ter, we show a selection of related scientific work, established technology, and
their historic evolution in chapter 2. Afterwards, amore focused analysis of the
Person Identity Agent (PIA) is performed in chapter 3, including requirements,
threatmodel and technicalmeasures that guide the implementation. Chapter 4
analyzes solutions for storingdigital identities onAndroid andhowtheyfit into
the Android security model. In chapter 5 we look at the software architecture
behind our app and show how we were able to leverage the modern systems
programming language Rust for shared business logic that runs on Android.
Chapter 6 looks at the issue of reproducibility for the embedded PIA. This cov-
ers both the theoretical basics around trust and the software supply chain, as
well as an evaluationof the embeddedPIA implementation forAndroid. Finally,
in chapter 7 we conclude with a summary of our contributions and provide an
outlook towards futurework, both for theDigidowresearchproject and the sci-
entific community at large.

2Not to confused with the existing support for Rust in the Android Open Source Project (AOSP),
which enables the creation of OS components in Rust. See https://source.android.com/docs/
setup/build/rust/building-rust-modules/overview.

https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview


Chapter 2

History and RelatedWork

The first computers used by multiple individuals gave rise to the requirement
of an authentication process. Simple user accounts for a computer evolved
into digital identities that can be used for countless online services. Nowadays,
many physical world authentication processes involve digital components or
are in the process tomove towards such approaches. This chapter presents ba-
sic terminology, the history and noteworthy related work around digital iden-
tities.

2.1 Basics of the Authentication Process

An authentication process, which is used to gate access to some resource, con-
sists of two steps:

1. An individual performs identification, the action of presenting credentials
with the intent to access a user account or claiming a certain identity.

2. These credentials are then checked by the system for validity, a process
called authentication.

If valid, the individual has proven their control over the digital identity. While
some terminology has evolved (e.g. user account vs. identity), the above defi-
nitions apply to all presented systems in this chapter.

Additionally, complex systems often feature many permissions. Mapping be-
tween identities and permissions is done via authorizations. These are encoded
via a securitymodel (e.g. discretionary access control (DAC),mandatory access
control (MAC), role-based access control (RBAC)). While interesting in their
own right, they are not a focus area for us and will only be mentioned tangen-
tially.

2.2 User Accounts with Passwords

Passwords are the oldest authentication process used in computer science. By
remembering a secret password string associatedwith a user account, an indi-
vidual proves control over the latter. After their introduction by the Compatible
Time-Sharing System (CTSS) in 1965 developed at the MIT [32], the security
of password storage was augmented via the first key derivation function (KDF)
crypt, entailing password hashing and salting, by Morris and Thompson [88]
to enhance the security of the first UNIX systems. Even though they have been
in use for over 50 years, their basic functionality remains unchanged.

The classical problem of password security is that “strong” passwords are in-
herently at oddswithmemorability by humans, thus leading towidespread use

8



2 History and Related Work 9

Figure 2.1: Distribution of password entropy as chosen by users across some
services, grouped in buckets of 10 bits. From “A Large-Scale Study
of Web Password Habits” by Florencio and Herley [40].

of weak passwords that are either short and/or guessable. One study by Voyi-
atzis et al. in 2011 [131] has found an average password length of 7 characters.
According to another large study by Florencio and Herley [40], users tend to
choose insufficient passwords even for important services. Figure 2.1 shows the
distributionof password entropy for someprominent services in2007. Even for
an important service like PayPal users opted to use a password with an average
entropy ofmere 42 bits, whichwas consideredweak even back then1. Improved
KDFshavehelped to a small degree. Their principle of key stretching requires in-
creased computational cost for all verification attempts. At the same time ad-
versaries have also evolved techniques to crack hashed passwords, specifically
rainbow tables that trade extreme storage requirements of password dictio-
naries formanageable computational cost.Overall, increasedcomputingpower
has shifted the requirements for a strong password to be even longer andmore
convoluted.

2.3 Handling Numerous User Accounts/Digital
Identities

Anever increasingnumberofdigital services requireuser accounts. It is no sur-
prise that password reuse, i.e. one individual using the samepassword formul-
tiple services, is widespread and a well understood problem [33, 70]. As Ives et
al. [70] have found, password reuse results in a domino effect where any com-
promised service results in trivial access to other services where the user opted
to reuse a password. We highlight two approaches to improve the usability of
passwords when interacting with numerous digital services.

1These two references are slightly dated and research did not surfacemore recent empirical stud-
ies that are based on surveys of large real world applications. However, this is a good indication
that technical best practices of password storage are followed and thus proper hashingmakes a
large scale survey of password complexity infeasible.
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2.3.1 PasswordManagers

Passwordmanagers, also known as keychain or keyring (inspired by the epony-
mous physical keychain/keyring), are used to store credentials in a password
database and thus permit access to multiple digital accounts. During regis-
tration for a new service the individual chooses a “strong” password, prefer-
ably utilizing an integrated password generator utility2. The entire credential,
consisting of password, username and other optional metadata, is stored en-
crypted in a password database. Therefore the individual is no longer required
to remember credentials for individual user accounts, only the master pass-
word that protects access to the password database itself. Subsequently each
credential can (and should) use a unique password unrelated to all others, ef-
fectively solving the issue of password reuse.

A password manager can be used for arbitrary digital services. Storing cre-
dentials within it is transparent to the service and automatic insertion of cre-
dentials is available for the majority of applications, including web browsers3.
Essentially, this approach does not require any additional effort by the ser-
vice provider. Instead, each individual is required to select and configure their
preferred password manager solution and manually maintain the password
database.

One of the oldest passwordmanagers is theMacOS Keychain, after being orig-
inally developed and integrated into Apple’s e-mail system PowerTalk in the
early 1990s it was promoted as a system component, part of Mac OS 9 in
1999 [103].Nowadays, there are a variety of passwordmanagers, each equipped
with unique features (e.g. varying OS support, browser integration, multi-
factor integration, etc.) The following list is categorized based on the delivery
format of the application and password database:

Local application with no integrated DB synchronization (e.g. KeePass4,
KeePassXC5, GNOME Keyring, KWallet, etc.),

Local applicationwith integratedDBsynchronization (e.g. 1Password6, Bit-
warden7, LastPass8, etc.)

and fully cloud-based applications, including their DB (e.g. Firefox Lock-
wise9, Meldium, Mitro, etc.)

2.3.2 Single Sign-On and Federated Identity Management

Single sign-on systems (SSO) require each individual to perform the authentica-
tionprocess only once, subsequently they canuse all services that participate in
theSSOsystem.After auser is registered, all services thatuse theSSOaccept the
previously created credential. Even better, a user with an active session should
not be prompted for his credentials again when accessing a different service
integrated with the SSO. Instead, the SSO system should perform a silent login
2Obviously users are free to divine their own passwords, but from a security perspective we rec-
ommend to use integrated utilities. The ability to choose arbitrary passwords is valuable for
various scenarios, e.g. where credential usage without password manager is desirable or exist-
ing “good” credentials should be recorded as a reminder.

3Some rare exceptions exist, such as theWindows UAC not permitting auto-type for security rea-
sons

4https://keepass.info/
5https://keepassxc.org/
6https://1password.com/
7https://bitwarden.com/
8https://www.lastpass.com/
9https://lockwise.firefox.com/

https://keepass.info/
https://keepassxc.org/
https://1password.com/
https://bitwarden.com/
https://www.lastpass.com/
https://lockwise.firefox.com/
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for the active user. Web-based SSO systems often use dedicated subdomains,
which store sessions cookies or similar, for this (e.g. account.my-corp.tld).
On a technical level SSO systems are often implemented with the help of stan-
dardized protocols. Prominent ones are:

Open Authorization (OAuth) [63] is an open standard related to access del-
egation, i.e. performing (eponymous) authorization between parties. It en-
ables users to grant applications access to specific data or permissions that
are part of the SSO account.

Security Assertion Markup Language (SAML) [97] is an open standard ad-
dressing both authentication and authorization between the parties in an
SSO.

AnSSO solutionneeds to be supported by the digital service being accessed. The
serviceprovider is responsible for the integrationwith theSSOsystem,whereas
the individual has no additional overhead and can simply use their dedicated
credential for the SSO system. Therefore, we observe a symmetry w.r.t to us-
ability and burden of effort compared to the previously presented password
managers.

Federated identity management (FIM) systems are specific SSO systems that
serve loose federations, typically spanning multiple legal entities [26]. Within
such a system there is one identity provider (IdP) that manages all identities
in the system and is responsible for authentication of individuals. Participat-
ing service providers (SP) enable login via the aforementioned IdP, effectively
outsourcing the authentication process.

The first widely adopted FIM was Microsoft Passport back in 1999 [1],
which evolved into today’s “Microsoft Account” (aka. Windows Live ID).
Beyond Microsoft owned services (MSN, Hotmail, etc.) it was also adopted
by various other sites [87], including prominent e-commerce retailers (e.g.
barnesandnoble.com, Buy.comandCostco.com) back then. Nowadays themost
popular federated identity services in the private industry are Facebook Con-
nect and Google Account [60]. During Q4 of 2015 they had a market share of
62% and 24% respectively in the “social authentication market”, i.e. among
FIM solutions. Modernization initiatives of governments also give rise tomore
and improved digital services for citizens. Thus, governments also tend to
offer SSO or FIM solutions, e.g.

in Austria “Handy-Signatur”, Bürgerkarte [9], and ID Austria [10] (the last
is the intended replacement for the two former ones) act as SSO for govern-
ment related services,

on a higher EU level there is the electronic IDentification, Authentication
and trust Services (eIDAS) EU regulation creating a FIM and permitting ac-
cess to digital government services across EUmember states.

Academia has their own dedicated federated identity solutions. Most notably
Shibboleth10 for accessing various academic publishers and journals with your
university credentials. But even network access is often done via the promi-
nent eduroam WLAN11, allowing seamless network access at all participating
university premises.

The OpenID Foundation is a non-profit organization working on the devel-
opment of open standards around FIM. Their original OpenID Authentication
process standards [37, 111], going back to 2005, used a custom standardized
protocol and are now obsolete (all versions, i.e. from 1.0 through 2.0). These

10https://www.shibboleth.net/
11https://eduroam.org/

barnesandnoble.com
Buy.com
Costco.com
https://www.shibboleth.net/
https://eduroam.org/
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Figure 2.2: Example of a relying party (RP) login screen in a federated identity
management (FIM) system (here: StackOverflow).

have been replaced with OpenID Connect (OIDC) [116]. Service providers, also
known as relying parties (RP) in the OpenID terminology, can accept identi-
ties from third party identity providers (IdP). Similar to OAuth 2.0, which this
standard is building on, OIDC is a technical standard that can be used to imple-
ment aFIMsystem.OIDC is concernedwith authentication anddefininga stan-
dardized set of claims around the user identity (e.g. given_name, family_name,
email, etc.) that are exchanged between RP and IdP. In fact, starting with
the introduction of OIDC in 2014, the vast majority of IdPs (e.g. Google Ac-
count, Facebook Connect, “Login in with Amazon/Twitter/Github”, etc.) im-
plementedOIDCas technical basis for their FIMsystems [65].However, instead
of allowing logins with arbitrary OIDC IdPs, the relying parties typically limit
the permitted IdPs to a group of well-known ones (see Figure 2.2 for an exam-
ple). The OIDC standard even included Self-Issued OpenID Providers (SIOP), a
personal, self-hosted IdP.

According to Allen [1] the next evolution after federated identity is user-centric
identity, which is defined as “individual or administrative control across multiple
authorities without requiring a federation”. The vision of OIDC with SIOP would
have been one such identity system. Unfortunately it was not realized due to
restrictive RPs that limit the choice of supported IdPs [65].

2.4 User-Centric Identity Systems

All identity systems presented up to this point manage their digital identi-
ties (i.e. user accounts) either via a centralized instance or within a federa-
tion. First user-centric identity systems that shifted the creation andmanage-
ment of identities to the user are old. It is worth highlighting these systems
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to show their fundamental differences to the previously presented approaches
w.r.t. their trustmodel. These identity systemshave their ownunique strengths
and weaknesses.

2.4.1 SSH Identities and the SSHAgent

Secure Shell (SSH) is a protocol tomanage remote servers over an insecurenet-
work. The actual functionality of the SSH protocol, issuing commands to re-
mote servers, is not relevant for our work. We are interested in the authen-
tication process between SSH client and server. Although there is support for
password-based authentication of users, it is commonly discouraged in favor
of using SSH identities. These are public-private keypairs that are generated
andmanagedbySSHclients. Theyareused toauthenticate the client,whoholds
the private key, to the server,which has a list of authorized public keys. To pro-
tect the sensitive private key of an SSH identity, it is stored in an encrypted for-
mat and requires the individual to enter a passphrase to unlock it. The authors
of SSH recognized that this scheme, requiring the user to enter the passphrase
for all usagesof anSSH identity, isnot very convenient. Thus, there is thehelper
program ssh-agent that maintains unlocked SSH identities in memory. After
startup of the former, one can add and unlock SSH identities via ssh-add. Sub-
sequently any usage of the SSH protocol checks the running SSH agent for un-
locked SSH identities, avoiding repeated entry of the passphrases for the same
SSH identities. The ssh-agent utility has been part of the prominent OpenSSH
implementation at least since their inception in 199912, back when OpenSSH
was born as fork of the original SSH version 1.2.12 [92]. However, note hat our
definition of an agent requires an active role of the software without explicit
user input (cf. chapter 3) and thus an “SSH agent” should not be confusedwith
or considered equivalent to a personal identity agent (PIA) in this work.

A fundamental difference to the previously presented identity systems is the
trust model. The SSH server trusts a client because an authorized public key
was previously installed via an out-of-band channel13. On the flip side, the SSH
client relies on a trust-on-first-use (TOFU) authentication approach [132]. In
case of SSH this trust model entails that the application user manually checks
the presented server fingerprint via an out-of-band channel and thus con-
firms that the client established a connection with the legitimate server (in-
stead of a MitM attacker). The SSH server fingerprint is then remembered in
a known_hosts file and ensures authentication of the server to the client for
future connections. This user-centric, i.e. decentralized, approach to identity
management is possible due to the asymmetric cryptography involved. This is
in stark contrast to centralized or federated identity systems. The latter place
ultimate trust in a central identity provider that can arbiter over account valid-
ity as it pleases,whereas the former is a peer-to-peer approachwithout central
authority.

One way of highlighting the novel nature and power of a user-centric identity
system, like SSH, is by comparing it with previously presented use cases:

A very simple usage of SSH only employs a single SSH identity for a real-
world individual. In this case, the individual unlocks their singular SSH
identity within in the SSH agent and can subsequently access all remote

12We confirmed the presence of the tool in the openssh-1.0pre2-linux.tar.gz source code re-
lease.

13A practical way of doing this is the usage of the same insecure network channel, but using the
password based SSH authentication. After initial key provisioning the password-based authen-
tication should be disabled.
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servers where they are registered. Effectively, this type of usage makes the
SSH agent behave as an SSO system.

However, an individual may add any number of SSH identities to an SSH
agent. A usage where an individual has multiple unlocked SSH identities
means that the SSH agent behaves similar to a password manager. While
the SSH agent manages multiple SSH identities, there is, unlike with real
passwordmanagers14, no master password15.

In summary, one can see that SSH identities are a powerful identity system that
can be used as a SSO with some features of a passwordmanager.

User-centric identity systems without any central trust come with new chal-
lenges. A specific one for SSH identities is the transitive trust betweenmultiple
SSH agents running on different nodes in a network, i.e. SSH agent forward-
ing: Connecting to a remote host H1 that also has an SSH agent, the remote in-
stance of the SSH agent is granted access to all the identities in the local one,
allowing convenient access to other hosts H2,H3, . . . over SSH via jump host
H1. However, Kogan et al. [77] observe that SSH agent forwarding infers full
trust to a remote host. If the aforementioned jump host H1 was compromised,
an attackerwith system-level privileges can issue arbitrary signing requests to
the local ssh-agent and thus impersonate the user. Kogan et al. developed the
Guardian Agent, which is a delegation system with granular control over what
remotehostsmayexecutewhichactions,drastically limiting theattack surface.
Notably, the official OpenSSH implementation has now adopted a similar fea-
ture [93], allowing user-defined restrictions on the usage of SSH identities for
different purposes. This is based on the hostname and is part of the OpenSSH
8.9 release.

2.4.2 Pretty Good Privacy andWeb of Trust

OpenPGP is an open RFC-based standard16 [38, 71, 122] that uses asymmetric
cryptography to securely exchange privatemessages andfiles. Themeat of PGP
is how to establish trust from Alice to Bob (and vice versa) that enable the se-
cure exchange of sensitive data, i.e. performing an authentication process (in
both directions). In an initial setup step Alice creates a PGP identity, consisting
of a public-private key pair, associated (user-)name and e-mail address. The
authentication process and message exchange consists of the following three
steps:

1. The desired communication partner Bob also has a PGP identity and Alice
receives his public key (via an out-of-band channel).

2. A message or file sent from Alice to Bob is both digitally signed (using the
private key of Alice) and then encrypted (using the public key of Bob).

3. After receiving the file or message over an insecure channel, Bob is per-
forming decryption (using his private key) and checking the digital signa-
ture (using Alice’s public key).

14The fact that the SSH agent by itself cannot automatically select the correct SSH identity for a
given host is not really a distinction to a password manager. One needs to specify the intended
SSH identity (either during CLI usage or in a host configuration file), which is the equivalent to
configuring a password manager entry with metadata that allows association from credential
to application or website (auto-type window name or URL).

15This detail means that it can be useful to store SSH identity passphrases in a regular password
manager, especially if a user hasmany SSH identities and wishes to rely solely on a singlemas-
ter password. E.g. KeePassXC features integration with the SSH agent, unlocking and locking
SSH identities along with the password database, see https://keepassxc.org/docs/KeePassXC_
UserGuide.html#_ssh_agent.

16Based on the original Pretty Good Privacy (PGP) program by Phil Zimmerman.

https://keepassxc.org/docs/KeePassXC_UserGuide.html#_ssh_agent
https://keepassxc.org/docs/KeePassXC_UserGuide.html#_ssh_agent
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Performing all these steps ensures the CIA properties of a secure channel, i.e.
confidentiality, integrity and authentication, as well as non-repudiation for
this exchange17.

As usual with asymmetric cryptography, the hard problem is keymanagement
and the trust model born from a decentralized identity system. The lack of a
central governing authority, or at least a list of implicitly trusted root identi-
ties (as is the case with the public key infrastructure (PKI), consisting of root
certificate authorities (CA) used by TLS), is both a curse and blessing at the
same time. Initial distribution of the public portion of identities (public key +
username + e-mail) is commonly done via websites or dedicated keyservers18.
Anyone may create and publish any PGP identity, giving rise to the possibility
to impersonate others.

A trust signature is an assertion by one individual (via their PGP identity) that
attests that another PGP identity does indeed belong to the individual named
in the metadata. As a prerequisite for secure communication one needs trust
signatures for each communication partner, either signed by oneself or via a
trusted proxy (that acts similar to a CA in a PKI). This ensures that the initial
communication between two parties can be properly authenticated, i.e. it does
not rely on the TOFU trustmodel. The graph of trust signatures among all par-
ticipating PGP identities is the web of trust. This complicated system is a key
reason for the bad usability of PGP [112, 133], especially among average users.
At the same time, the web of trust cannot be undermined by any single entity,
since users establish trust to the PGP identities themselves in a peer-to-peer
fashion.

A noteworthy aspect of asymmetric cryptography, as introduced with user-
centric identity, is the unavoidable need to persistently store the private key in
such a way that it remains accessible to the actual signing/decryption process.
This is noteworthy, because credentials for classical logins (including a SSO or
FIM system) can be protected via password hashing schemes (i.e. password key
derivation functions) at rest and thus, provided proper usage and work fac-
tors, are well protected against extraction. To address this shortcoming, one
can employ dedicated hardware, like smart cards (cf. section 3.1.3), that either
generateor import theprivatekeys into securityhardware. Fromthenon, cryp-
tographic operations are performed inside the securehardware andkeys canno
longer be exported (i.e. they are “sealed” into hardware). Facilitating this us-
age for PGP keys, there is a Functional Specification of the OpenPGP application
on ISO Smart Card Operating Systems [102]. One noteworthy implementation of
this OpenPGP specification, aside from classical smart cards, is GoKey19, with
support for sealing and usage of PGP and SSH keys. It is based on the TamaGo
framework20, which enables the execution of bare metal Go binaries on ARM
SoCs. Said software was originally developed for the USB Armory21, a tiny sin-
gle board computer with focus on security features that is connected to a regu-
lar computer via USB. The authors of GoKey envision that a software stack that
solely relies on the managed language Go is slimmer and less susceptible to
memory-related attacks found in C/C++.

17This intentionally skips over PGP details like subkeys, different key types (Certification, Signing,
Encryption, etc.) and other auxiliary features, instead focusing on the core use case.

18One popular website is https://keybase.io. Dedicated keyservers are exclusively concerned with
the distribution of PGP public keys, e.g. Symantec (current owners of the original PGP software)
runs https://keyserver.pgp.com/, OpenPGP runs https://keys.openpgp.org/.

19https://github.com/usbarmory/GoKey
20https://github.com/usbarmory/tamago
21https://github.com/usbarmory/usbarmory/wiki

https://keybase.io
https://keyserver.pgp.com/
https://keys.openpgp.org/
https://github.com/usbarmory/GoKey
https://github.com/usbarmory/tamago
https://github.com/usbarmory/usbarmory/wiki
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2.4.3 Partial Solutions with (Some) Centralized Trust

The twopresented identity systems are extreme examples of their user-centric
nature. In addition to enablingmanagement and creation of identities by any-
one, they abstain fromusing centralized or federated trust. Instead, their peer-
to-peer naturemakes themhighly resistant to centralized control and censor-
ship. Furthermore, the two specifically highlighted systems are relevant to a
large user base and continue to evolve.

The need for an initial out-of-band exchange in a TOFU trust model and the
complexities around key management hinder mainstream adoption of “pure”
user-centric identity systems without centralized trust (cf. PGP usability).
Many modern FIM systems adopted some weak aspects of user-centric ones.
E.g. Facebook Connect and Google Account have permission systems that give
users control over what account data/control is shared with which service
providers. The OpenID standards were heavily inspired by the movement to-
wards user-centric identity. This manifests itself in the previously noted sup-
port for multiple independent identity providers.

2.5 Self-Sovereign Identity

Self-sovereign identity (SSI), as introduced by Allen [1], is the next evolution of
digital identities beyonduser-centric identity approaches and emphasizes true
user control and autonomy, portability of identities, and capability to make
complex claims. More precisely, his ten proposed principles of SSI were cat-
egorized by Tobin and Reed [129] into three groups and are a starting point for
further academic work by Mühle et al. [89]. The aforementioned are:

Security: The identity information must be kept secure, entailing protec-
tion, persistence, minimisation.

Controllability: The user must be in control of who can see and access their
data, entailing existence, persistence, control, consent.

Portability: The user must be able to use their identity data wherever they
want and not be tied to a single provider, entailing interoperability, trans-
parency, access.

Achieving these goals is not straight forward. Many projects, (non-profit)
organizations, and interest groups across the industry and academia have
emerged and aim to create modern identity systems that realize the vision of
SSI. We highlight a selection of (supra)national initiatives and briefly explain
their main objectives to give a clearer overview of the subject.

2.5.1 International and Supranational Initiatives

The Decentralized Identity Foundation (DIF) [72] is intended as a place to col-
laborate around decentralized identity. Based on discussions and experiments
it aims to cultivate ideas and create specifications. The vision is focused on en-
abling “aworldwhere decentralized identity solutions allow entities to gain control
over their identities and allow trusted interactions” [72]. To this end, they want
to realize this goal via an open-source implementation-driven approach and
develop an interoperable identity stack. Subsequently, mature concepts and
specifications are meant to be included or guide standardization work in this
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area. According to them, SSI systems are a subset of decentralized identity sys-
tems22. Specifically, SSI systems are used to address human identity use-cases
and require sovereignty and privacy. Beyond that, decentralized systems also
aim to support collective non-human identities. The exact boundary between
SSI decentralized systems is complicated by the fact that sovereignty and pri-
vacy are social constructs. Since their focus is technological, they are support-
ive of any decentralized identity system, whether they feature SSI qualities or
not.

TheSovrinFoundation [123] aims to create an identity layer for the internet and
wants to offer a global public utility that enables creation and usage of digital
identity for people and other entities (e.g. organizations and devices). Specifi-
cally, they develop the Sovrin Network (short “Sovrin”), “a public service utility
enabling self-sovereign identity on the Internet” [123]. Their vision entails the
possibility for individuals to hold identity credentials without a strict depen-
dency on siloed databases that control access to them. Nodes of this network
can be found in several countries spanning four continents, underlining their
international global focus.

The European Self-Sovereign Identity Framework (ESSIF) project [99] by
the European Commission aims to develop a generic and interoperable self-
sovereign identity (SSI) system, entailing both specification and the support-
ing infrastructure that is needed for citizens to control their own identity. It is
designed to interact with other systems and platforms across public and pri-
vate organizations. GDPR-compliance and alignment with the existing eIDAS
regulation are explicit goals. ESSIF is part of the European Blockchain Services
Infrastructure (EBSI) [35], an initiative to “leverage blockchain to the creation of
cross-border services for public administrations and their ecosystems to verify in-
formation and make services trustworthy”.

2.5.2 “Schaufenster Sichere Digitale Identitäten”

The project “Schaufenster Sichere Digitale Identitäten” by the German federal
ministry for economic affairs and climate action [41] aims to develop German
eIDAS solutions. It is setup as a competition and after an initial step there are
four showcase projects currently being implemented:

ID-Ideal23,

IDunion24,

ONCE - Online einfach anmelden25, and

SDIKA26.

All projectsmention SSI either as goal or understand it as building block to en-
able their respective vision of digital identity.

22https://identity.foundation/faq/#is-decentralized-identity-different-from-self-sovereign-
identity

23https://id-ideal.de/
24https://idunion.org/
25https://once-identity.de/
26https://www.sdika.de/ and https://www.digitale-technologien.de/DT/Redaktion/DE/

Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_sdika.html

https://identity.foundation/faq/#is-decentralized-identity-different-from-self-sovereign-identity
https://identity.foundation/faq/#is-decentralized-identity-different-from-self-sovereign-identity
https://id-ideal.de/
https://idunion.org/
https://once-identity.de/
https://www.sdika.de/
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_sdika.html
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SchaufensterSichereDigIdentProjekte/sdi-projekt_sdika.html
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2.6 Further Noteworthy Standards and Projects

There aremanymore past and current digital identity projects beyond the ones
listed so far. Additional ones that are relevant and/or related to our work, but
do not fit well into the previous sections are listed here. However, the digital
identity space is vast andwe cannot possibly offer an exhaustive list of projects.

2.6.1 Digital Wallets and Trusted ServiceManagers

A digital wallet, i.e. e-wallet, is an application or online service on a mobile
phone that (originally) enabledmonetary payment for goods and services [64],
but has in some instances evolved to include functionality of digital identity
systems. The origins of digital payment (onmobile phones) can be traced back
to 1997: Coca-Cola installed two vending machines in Helsinki that allowed
payment via text messages [78, 114].
Google Wallet27 was introduced in 2011 as one of the first digital wallets, being
one of two notable available options on the US market back at that time [119],
and allows storage of a dedicated virtual EMV card in a secure element (SE).
Subsequently, this virtual EMV card can be used like a classical one to perform
payments with amobile phone. This was implemented via Near Field Commu-
nication (NFC), a wireless technology for close proximity data exchange.
On theflip side, the introduction of Apple Passbook, later called (Apple)Wallet,
in 2012 did originally not support any payment, but was used for the storage
of identity documents (e.g. boarding passes, coupons and tickets). Two years
later, in 2014, the Apple Paymobile payment systemwas added. By storing ex-
isting EMV card details in the Apple Wallet, users are able to perform payment
as if theywere using the physical plastic cards. Similar to GoogleWallet, NFC is
the technology that enables usage of mobile phones as a drop-in replacement
for traditional wireless EMV card payment.
The aforementioned digital wallet applicationswere the original reason for in-
cluding SEs into mobile phones. While the procedure for loading applets onto
the SE (cf. section 3.1.3) depends on the specific SE issuer [2], it commonly
anchors trust in the SE issuer by cryptographic means. E.g. Loading and ex-
ecution of a third party applet may require a MAC with a symmetric key only
known to the SE issuer or a digital signature rooted in a key pair only known
by the latter. An SE issuer may delegate organizational control to a Trusted
Service Manager (TSM). The latter is a neutral broker that is intended to pro-
vide access to the SE for legitimate third party applications (e.g banking or
a public transport agency). Unfortunately, open TSM infrastructure did not
gain widespread adoption in the industry yet and some TSM initiatives were
even discontinued [14]. The absence of TSMs with a wide market reach es-
sentially force third parties to interact with multiple SE issuers directly. As a
consequence, only third parties with significant political capital have a realis-
tic chance to be approved. A single third party needs to collaborate with all SE
issuers with noteworthy market shares. Otherwise, this gives rise to fragmen-
tation where a share of technically capable phones are not supported28. Later,
27Later in 2018, the functionality of this wallet was simultaneously rebranded as a standalone

“Google Pay Send” app and integrated into a unified app called “Google Pay” [11, 25]. While
the standalone Google Pay Sendwas discontinued in 2020, the unified appwas renamed back to
“Google Wallet” in 2022 [76].

28For specific use cases thatmay be acceptable. Consider the recently announced collaboration be-
tween the German BSI and Samsung as mobile phone OEM at https://news.samsung.com/de/
samsung-und-bsi-intensivieren-zusammenarbeit. As a federal agency, theBSI cansimply en-
force thedeploymentof eSE-equippedSamsungmobilephones toemployees. Subsequently, the
custom applet can be loaded into the SEs due to sanctioning of Samsung.

https://news.samsung.com/de/samsung-und-bsi-intensivieren-zusammenarbeit
https://news.samsung.com/de/samsung-und-bsi-intensivieren-zusammenarbeit
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host card emulation (HCE) enabled the storage and usage of virtual cardswith-
out dedicated SE hardware in phones.

Related to this TSM subject is the project “OPTIMOS - Sichere Identitäten für
mobile Dienstleistungen” [21] by the German Bundesdruckerei. Secure stor-
age of digital identities, e.g. public transport tickets, boarding pass, etc. on a
smartphone is tricky due to the heterogeneous landscape ofmobile devices and
operating systems. In the past, each provider has created their own complex
infrastructure for this purposes. OPTIMOS set out to simplify this situation by
developing a TSM applet running either on a eSE or eUICC and an associated
management app. Providers can use the interface of the TSM to store personal
identities andother sensitive data in a secure fashion, utilizingdedicatedhard-
ware wherever available.

A second, refined iteration of this project, called “OPTIMOS 2.0 - Entwicklung
der offenen, praxistauglichen Infrastruktur für mobile Services” was focused
on creating a generic ecosystem for the creation of TSMs. After completion,
the project became the basis of BSI (currently draft) TR-03165 Trusted Service
Management System [20]. Said guideline defines aTrusted ServiceManagement
System (TSMS), which aims to streamline the operation and adoption of TSMs.

2.6.2 Mobile Driving License and Beyond

Driving licenses are one type of identity document that today is predominantly
issued and presented in an analogue format, but the recently finished ISO/IEC
18013-5mobile driving licence (mDL) application standard [68] establishes an
interface specification for mobile driving license (mDL) applications and thus
paves the way for a broader adoption of digital driving licenses. The standard
is focused on the verification of anmDL. This involves the connection of the li-
censeholderwith themDL, amachine representationanddigital transfer of the
mDL data via an mDL reader, and verification of the received mDL data by the
verifier. Provisioning of mDLs, an essential component of a full implementa-
tion, is not in scope of this standard. However, the standard doesmention that
the transaction and security mechanisms in this document have been designed to
support other types of mobile documents, specifically including identification doc-
uments, short mdoc, which hints at the possibility of usage beyond the scope
of driving licenses. As technological ground work both Apple (iOS 15 via Apple
Wallet [5]) and Google (Jetpack support library - Identity Credentials API [56])
have introduced support for the ISO standard. Several states in the USA [5] aim
to introduce digital driving licenses on this basis during 2022.

The ISO/IEC 23220 [69] standard series on building blocks for identity man-
agement via mobile devices is currently being developed. It inherits and en-
hances the generic parts of the ISO/IEC 18013-5 standard. Specifically, the first
part of the new ISO standard series “specifies generic system architectures and
generic life-cycle phases ofmobile eID systems in terms of building blocks formobile
eID system infrastructures and normalizes interfaces and services for mobile eID-
Apps and mobile verification applications” [69]. The standard series is targeting
a wide range of applications (e.g. health assurance cards, payment cards, gov-
ernment IDs, electronic passports, driver license, etc.), but does not preclude
specialized standards that target specific application areas.

2.6.3 COVID-19 Certificate

A contemporary topic are certificate schemes around COVID-19, used all over
the world to prove vaccinations status, a negative diagnostic test result or re-
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covery from a past infection. There is a survey paper by Karopoulos et al. [75]
that looks at the landscape of certification schemes both in real-world de-
ployments by governments and proposals by academia. On a technical level,
schemes presented in the survey can be divided into

blockchain (e.g. AOKpass, Cerify.health initiative, and IBM Digital Health
Pass)

and public key approaches that root their trust into a PKI (e.g. WHO Smart
Vaccination Certificate, EU Digital COVID Certificate (EUDCC), and Com-
monPass).

They observed a trend thatmost schemes permit the user to present their proof
either paper-based or paperless, facilitating usability. Overall Karopoulos et al.
found that theEUDigital COVIDCertificate (EUDCC)providebetterprivacy than
comparable schemes from Asia and America. This is a notable example on the
combination of digital signatures for a physical certificate.



Chapter 3

Personal Identity Agent

On a high level, a personal identity agent (PIA) is a digital representative of an
associated individual. It is a key component in the larger research project ex-
plained in section 1.1.1. More precisely, we define the term as follows [83] “A
hardware/software system actively representing individuals in their Digidow inter-
actions with sensors, verifiers, and issuing authority (IA). A PIA is under control of
the individual it represents and assumed to act in the best interests of that individ-
ual. The PIA collects and manages claims from different issuers (such as IA, sensors,
or self-issued by the PIA). ”

3.1 Concepts and Technology for Digital Identity

There are several academic research areas and technological standards that
cater to the sphere of digital identities. We present a small selection of these
as preparation for the architectural work on PIAs in the next section. Effec-
tively, these are building blocks of existing work that we want to build on and
incorporate into our vision.

3.1.1 Zero-knowledge Proofs as Enabler for Privacy

A zero-knowledge proof (ZKP) is a cryptographic protocol that allows one entity,
called prover, to prove to a different entity, the verifier, that a specific asser-
tion is true, while minimizing the exposure of unrelated data [47, 48]. If the
secret s is a digital identity, we call an assertion over it a derived credential or
attribute based credential [59]. Derived credentials based on ZKP are essen-
tial tools to achieve data minimization, i.e. only exposing theminimal amount
of data required for specific actions. Notably, this may include a “randomiza-
tion” of the digital signature, meaning that the same proof originating from
the same credential produces different, but nevertheless valid, signatures for
each creation. Such a processmaintains the cryptographic security guarantees
of regular digital signature algorithms, but makes the signature unsuitable for
fingerprinting the user. We introduce two different group signature schemes,
building blocks for non-interactive ZKPs [108], distinguished by their power-
fulness.

The CL signature scheme, by Camenisch and Lysyanskaya, is both a group sig-
nature scheme [23] and an anonymous credential system [24]. The prover has
access to a secret s, which could be anything (e.g. simply a password string, col-
lection of related digital identities, each consisting of attributes), and is signed
by a trusted authority via a ZKP protocol with the signature sigs. They want to
convince the verifier of a specific assertion, i.e. predicate, p(s) without simply
disclosing the secret s and associated signature sigs itself. The distinguishing

21
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featureof aZKPbasedonaCLsignatureover a standardasymmetric cryptosys-
tem used for message signing is the possibility to derive a signature sigp(s) that
asserts only the true statement p(s). The exact capabilities of the predicate de-
pend on the group signature scheme and the ZKP. Awell-known capability that
is available in CL are range proofs, i.e. proving an inequality (e.g. x > threshold)
based on a secret value xwithout actually revealing the raw value. After trans-
mitting the derived signature sigp(s) to the verifier, the latter can confirm the
usual authenticity and integrity properties, which are rooted in the trust to the
signing authority of s and hence assert the correctness of p(s). E.g. if a digital
identity contains the date of birth, a zero-knowledge range proof enables the
prover to assert that the person in question is older than a specific age. The ver-
ifier never learns the full date of birth. Many real world use cases (e.g. buying
cigarettes, entering a night club), are sufficiently served by asserting a mini-
mum age (e.g. 18, 21).

Another possible building block for ZKPs are pairing-based signature schemes.
These are by themselves less powerful and limited to implementing, what we
informally call ZKPswith subset capability. Themost prominent example is the
BBS+ signature scheme by Boneh et al. [16]. Here, the secret s is made up of
several individual messages s = s1, s2, ...sn, all of which are signed by a single
signature value sigs = sigs1,s2,...sn . The prover can now select an arbitrary subset
of these messages si, sj, ...sm = s′ and the ZKP allows the creation of a matching
signature sigsi,sj,...sm = sigs′ . In this case the verifier receives s′ with the associ-
ated signature sigs′ and verifies it. E.g. a digital identity consists of attributes
related to an individual and this variant of a ZKP allows the prover to disclose
only attributes relevant to the specific transaction. Consider that the signup to
a customer loyalty programmay only require a small number of attributes (e.g.
full name, gender, e-mail address). All other attributes (e.g. physical address,
date of birth, social security number) are omitted in s′ and hence hide not just
their value, but even their existence altogether.

Related to this is the concept of an anonymous credential, a type of credential
that has no identifier or quasi-identifiers with longtime correlation capabil-
ities about the individual [27]. By that we mean the omission of attributes,
that, either alone or in combination act as identifiers (e.g. social security num-
ber or the combination of full name and date of birth). This also prohibits
pseudonyms (e.g. online forum username), since their long-lived nature al-
lows correlating multiple transactions with each other. Using an anonymous
credential is only possible if the transaction has no hard requirement for a
(pseudonymous) identifier1. By using ZKPs one can derive anonymous creden-
tials from any regular credential, which are often equipped with a unique per-
sistent identifier from the IA. Ultimately, anonymous credentials achieve cryp-
tographic unlinkability, a key measure to increase privacy.

3.1.2 W3C Verifiable Credentials

W3Cpublished the Verifiable Credentials (VC) Datamodel Recommendation [124],
“a standardway to express credentials on theWeb in away that is cryptographically
secure, privacy respecting, and machine-verifiable”. The aforementioned stan-
dard is the primary output of the Verifiable Credentials Working Group, but is
augmented by a “working group note” on use cases [98].

1This even prohibits attributes like a serial number of a one-time use ticket. On first glance this
is neither an identifier of the individual, nor pseudonym (since it’s used only once). However,
collusion between ticket vendor (IA in Digidow sense) and verifier does allow linkability that is
not required for functionality.
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Figure 3.1: Example for a verifiable credential in the W3C VC data model. The
credential is shown as an abstract graph and all information is en-
coded as subject-property-value triples, visualized as ovals, ar-
rows and rectangles respectively. From “Verifiable credentials data
model 1.1: Expressing verifiable information on the web” by Sporny
et al. [124].
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A verifiable credential (VC) is an identity document that is digitally signed . Fig-
ure 3.1 contains an example about a university alumni named Pat. Any single
VC contains three components, namely

1. credential metadata (highlighted in purple in the figure): e.g. who issued
the credential? when was the credential issued?,

2. claim(s) (highlighted in yellow in the figure): specific statement about the
credentials subject; e.g. Jon holds a drivers license for vehicles of a certain
type and

3. proof(s) (highlighted in green in the figure): cryptographic signatures by
the issuer of the credential.

A verifiable presentation (VP) is used to

bundle up one or more credentials to form rich and complex statements
(e.g. enrollment into a university typically requires the assertion of many
claims) and/or

to formulate and digitally sign a derived credential via a ZKP.

Figure 3.2 contains a simple VP, which wraps the previous example from Fig-
ure 3.1. VPs are themselves composed of 3 components, namely

1. presentation metadata (highlighted in violet in the figure): e.g. are there
specific terms of use,

2. verifiable credential(s) (sub-areas highlighted in previously mentioned
colors in the figure): a combination of one ormore credentials and/or a de-
rived credential and

3. proof(s) (highlighted in blue in the figure): cryptographic signatures by
the composer of the presentation.

3.1.3 Hardware Supported Security

Using dedicated hardware to strengthen or establish security is a popular ap-
proach. The reduced attack surface of dedicated security hardware (in relation
to general purpose feature-rich hardware) and the additional layer of defense
against threat actors are obvious advantages over classic software-only ap-
proaches. In this sectionwe present a selection of hardware security technolo-
gies that are relevant for mobile devices and therefore interesting for storing
sensitive data.

Trusted Execution Environments (TEE)

In general, trusted execution environments (TEE) [113] are special tamper re-
sistant environments that run trusted applications on top of a separated kernel
in order to ensure authenticity of the executed code.

ARMfeatures a security extension,marketed as “ARMTrustZone”, that imple-
ments a TEE on the main application processor (AP) and is similar to virtual-
ization technology or CPU rings. Each ARM core can switch between

a non-secure world, typically running a feature rich OS like Linux, and

a secure world execution mode, intended for security sensitive trusted ap-
plications on top of a dedicated kernel.
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Figure 3.2: Example for averifiablepresentation in theW3CVCdatamodel, em-
bedding a verifiable credential. The credential is shown as an ab-
stract graph and all information is encoded as subject-property-
value triples, visualized as ovals, arrows and rectangles respec-
tively. From “Verifiable credentials data model 1.1: Expressing ver-
ifiable information on the web” by Sporny et al. [124].
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Smart Cards

Smart cards (integrated circuit card, ICC) are used to securely store and pro-
cess data formany use cases [110]. Interoperability requirements have resulted
in the widespread adoption of the ISO/IEC 7816 standards as a common basis.
Specifically, the ISO/IEC 7816-4 standard defines “Organization, security and
commands for interchange” and as part of this, introduces the application proto-
col data unit (APDU) as atomic communication unit between a smart card reader
(issuing commands) and a smart card (replyingwith a response). Furthermore,
it defines thatmultiple applications, each identifiedby anapplication identifier
(AID), can exist and run in parallel on a smart card OS.

Typical smart card OSes, like the the Java Card OpenPlatform (JCOP) or MUL-
TOS, have become quite powerful. In case of JCOP the ICC runs an implementa-
tion of the Java Card platform edition. The latter is a tiny Java virtual machine
running Java applets on top of the native portions of the card OS stack. Since
all smart cards relevant to our purposes use the JCOP platform, we us the term
applet as synonym for applications running on any ISO compatible smart card
for this thesis. This improves readability sincepossible confusionwith applica-
tions running on other processors are avoided. Many use cases have their own
dedicated standards on top of the ISO ones, including

EMV for payment,

universal integrated circuit card (UICC)2 for identification of a user in the
mobile network, and

other special purposes usages (e.g. FIDO2 authenticators provides strong
authentication for the web).

Secure Element (SE)

A secure element (SE) is an integrated circuit chip that adheres to the previ-
ously mentioned ISO/IEC 7816 standard and is embedded into electronics. The
term originates from theNFC domain [30, 90], where it is often combinedwith
anNFCcontroller into a single package.We focus onSEs that are embedded into
mobile phones and thus provide fully autonomous computing and storage ca-
pability independent from themain AP. Just like with smart cards, an SE runs a
card OS and can thus run various applications.

Secure Enclave

Secure enclaves are security-dedicated subsystems embedded into the main
systemona chip [6]. Conceptually theyhave the samegoals as SEs, but they use
custom protocols to communicate with other system components (instead of
theones standardized in ISO/IEC7816). Ona technical level theyusually consist
of, at a minimum, a small CPU or micro-controller and a true random number
generator. Within the mobile domain they can primarily be found in Apple de-
vices [6], while in the Desktop space there are the Intel SGX3 and AMDMemory
Encryption [73] solutions.

2A standard that holds a subscriber identity modules (SIM) card as primary component.
3https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/
overview.html

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
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3.2 Requirements and Architectural Measures

3.2.1 Requirements and ThreatModel

The functional requirements for a PIA are derived from the larger project vi-
sion [83] and are as follows:

R1 The PIA stores digital identities, each consisting of attributes related to the
associated individual.

R2 The PIA interacts with other entities in the Digidow system to perform au-
thentication for the individual.

R3 The individual has full legal control over the PIA.

These requirements were synthesized from project meetings [83].

Among the non-functional requirements we are primarily interested in secu-
rity and privacy. We build on existing threat modeling byMayrhofer et al. [84].
With regards to the individual themself, our scope contains the following
threats:

TI1 Privacy leak: Private information about individuals should remain private.
Leaks to unauthorized parties can be used for targeted phishing, blackmail,
or even identity theft (if sensitive identifier or payment information is in-
volved).

TI2 Identity loss: Individuals should always have access to their identities. If in-
dividuals become unable to prove their rightful associationwith an identity
they will be unable to access related services.

Beyond thatwe recognize the following threats, roughly based on the CIA triad,
for the PIA directly:

TP1 Unauthorizedattribute disclosure: APIAshouldonlydisclose attributes toau-
thorized parties. A violation of this results in a privacy leak for the individ-
ual, as described in threat TI1. Note that any action by the individual is con-
sidered legitimate, even if it is performed under duress. Such a case is not
considered a thread to the PIA, but obviously constitutes a privacy leak for
the individual (cf. threat TI1).

TP2 Denial of service: A PIA should always be accessible by their individual. Dis-
ruptionof such access leads to (temporary) loss of identities (cf. threat TI2).

TP3 Unauthorized modification: Any changes to the PIA (identities, configura-
tion, etc.) should be possible only for the associated individual. The storage
of wrong identities or the modification of existing ones can result both in
privacy leaks (cf. threat TI1) and identity loss (cf. threat TI2).

3.2.2 Measures for Security and Privacy

Based on the functional requirements and the threat model we derived secu-
rity and privacy related measures for the PIA. These are meant as a software
design-level intermediate step between the theoretical threat model and the
actual implementation. The measures act as guidelines that inform the actual
implementation work to achieve better security and privacy guarantees w.r.t
the modeled threats.
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M1 Transport security: All data that thePIA sends or receives should be subject to
secure transport encryption. This protects communication of the PIA from
threats TP1 and TP3 by ensuring confidentiality, authenticity and integrity.
On a technical level the PIA currently uses HTTP for communication with
other Digidow entities and thus all traffic needs to be protected with TLS.
Based on the current state of the art we propose to use at least TLS 1.2 and
preferably TLS 1.3 (or future newer iterations). An alternative approach to
satisfy the goal of transport security is the usage of Tor (The Onion Router).
Among other guarantees, Tor establishes a secure connectionwith authen-
tication and confidentiality.

M2 Secret key protection: The PIA needs to securely store secret keys4 that are
used to digitally sign its actions. An on-the-wire attacker with access to
the secret key of a certain credential may alter authentication from the
PIA to the verifier, constituting a threat TP3. In addition, if such an at-
tacker exposes the secret key publicly, it needs to be revoked, constituting
a threat TI2. Securely storing sensitive keys involves the usage of tamper
resistant hardware on modern mobile devices. Note that the exact choice
of keys and algorithms is constrained by the security and privacy require-
ments (cf. section 3.1.1). Section 4.2 analyzes the support available in con-
temporary hardware.

M3 Encryption at rest: Sensitive data that the PIA does not need regularly can
be protected by additional application encryption at rest. Modern Android
uses keymaterial that involves a user secret5 and protects against some ba-
sic threats (e.g. attacker reading the storage of a powered off device), but it
does leave the user vulnerable to other realistic threats. E.g. an attacker co-
ercing an individual to operate their PIAor attackerswith system level priv-
ileges observing the executionof thePIAon theAndroid device. All data that
needs to be processed or transmitted by the PIA as part of regular use cases,
e.g. digital identities and biometric embeddings, do not gain additional se-
curity by application encryption at rest. Consider the following two attack
scenarios:

The user can be coerced to use the PIA, including the authentication of
private key usage.

Similarly, an attacker with system level privileges can observe the
plaintext data during usage.

However, sensitive data that is not involved in regular use cases could be
encrypted at rest on the application level. This defense-in-depth mea-
sure provides an additional security perimeter for sensitive data against the
threat TI1. E.g. consider the following for transaction history data:

a) Transactions are being fed once into location trackingmodel of the PIA.
This is not reversible, i.e. one cannot extract exact transactions from the
model.

b) They are subsequently encrypted by the PIA via special key material.

c) In exceptional cases, the transactionhistory canbedecrypted again. E.g.
to migrate a full backup with all history data to a new PIA, where it can
be used to retrain a clean location tracking model.

The essential part of this usage is that the special key material is not avail-
able during regular usage. One such possibility are printed backup codes
stored in a secure physical location (e.g. safe).

4Note that inZKPprotocolsweuse the term secret key,whereas classical asymmetric cryptography
systems use the term private key.

5Called Android file based encryption (FBE) with credential encryption (CE).
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M4 Network privacy: Straight forward communication of the PIA over the net-
work, i.e. Digidow entities establish direct connections between each other,
leaves metadata traces in many places6 [67]. Such metadata can be used
to correlate two or more pieces of network communication with each
other [67], enabling third parties to create fingerprints of PIAs, and in
turn their associated individuals. This is problematic for unlinkability and
possibly also anonymity, depending on the specific circumstances and the
knowledge of the attacker7. Ultimately, this is at least a violation of the
threat TI1 and, depending on the observed metadata, possibly even an is-
sue with the threat TP1. In Digidow we use Tor (The Onion Router) to cloak
all sensitive network operations. We also use Tor Hidden Services, a spe-
cial type of network address that provides strong privacy guarantees for the
server side of the network exchange, to increase the privacy of both com-
municating entities. While this is not a silver bullet against all network at-
tackers, especially not against state level actors, it does prohibit or drasti-
cally harden network metadata against fingerprinting for a large percent-
age of threat actors.

The implementation of this measure is not a contribution by the author of
this thesis, but rather by other work streams of the Digidow project. Re-
gardless, it is listed for completeness sake since it is essential to satisfy the
requirements and threat model of the PIA.

M5 Biometric unlinkability: Biometric data on individuals is inherently per-
sonal and allows (mostly) unique identification of users in large data sets.
The following text is focused on facial recognition, but we believe simi-
lar procedures are possible for other biometrics. Facial recognition is com-
monly done by a neural network that processes a raw image of a face into a
high-dimensional feature vector8, an embedding. Subsequently, a similar-
ity score between two embeddings can be computed and based on threshold
values a (non-)match is determined. The unmodified embeddings used in
such a schemeare personal data that allow linkability between two transac-
tions and possibly even de-anonymization, provided an attacker has a face
image and knows the neural network involved. This constitutes a threat TI1
or possibly even a threat TP1. We combated this issue by employing a novel
privacy preserving hash, which we refer to as fuzzy hash, on the embedding
data [120]. The fuzzy hash uses a trap door function to generate a hash of
one, or preferablymultiple, embeddings. This generatedhash cannot be re-
versed to the original biometric data, prohibiting correlation to individuals,
i.e. de-anonymization, while maintaining sufficient information to allow
comparisons. Due to the addition of a salt value to the fuzzy hash, behav-
ing similar to salt values used in conventional hashing, we can ensure that
similar, or even identical, embeddings result in different hashes. As a con-
sequence, unlinkability between two related transactions is achieved.

The implementation of this measure is not a contribution by the author of
this thesis, but rather by other work streams of the Digidow project. Re-
gardless, it is listed for completeness sake since it is essential to satisfy the
requirements and threat model of the PIA.

M6 Cryptographic dataminimization: Digital credentials that are signed by clas-
sic asymmetric cryptography systems (e.g. DSA, ECDSA) require that the

6Here, we assume proper transport security as precondition, cf. measure M1.
7Consider an individual x with PIA y using the same IP address z over a significant time frame,
where y contacts anotherDigidowentity, e.g. verifieror sensor, regularly. Anyon-path-attacker
breaks unlinkability by correlating packets with IP address z to PIA y. If z is a fixed IP address
associated with an individual, e.g. residential internet connection, and the attacker has state
level capabilities, they can even infer the individual x, thus breaking anonymity.

8Common dimensionality ranges from 128 to 512.
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prover discloses the entire credential with all attributes. In many use cases
only a small subset of attributes or a predicate of an attribute from the is-
sued credential are sufficient to satisfy the verifier. Hence, any exposed in-
formation beyond the bareminimum required for an interaction is consid-
ered a threat TP1. We address this topic by signing digital credentials via a
ZKP protocol. The emergent derived credentials only expose the absolute
minimum data required by the verifier, while maintaining the usual guar-
antees of digital signatures. In many cases it is even viable to create and
use an anonymous credential, i.e. a credential without a unique fingerprint.
Data minimization on the level of the cryptographic system is an impor-
tant aspect to enhance privacy. Concretely, an analysis as part of the Digi-
dow project has resulted in a short list with the following group signature
schemes:

Camenisch-Lysyanskaya (CL, [23]) signature scheme

Boneh-Boyen-Shacham (BBS+, [16]) signature scheme and

Pointcheval-Sanders (PS, [104]) signature scheme.

A noteworthy downside of the CL signature scheme is the size scaling of the
signature, which is O(n), where n is the number of attributes in the signed
credential. In contrast, the other two schemes are O(1).

Note that there are no measures that address the threat TP2 specifically. Un-
fortunately, we believe there is little that can be done to address this one in full.
The measure M4, which involves the usage of Tor, may help against on-path
attackers that control some intermediate portion of a connection that is not a
choke point. A textbook example of this is the usage of Tor to bypass the Great
Firewall ofChina [127].However, anyon-pathattacker that controls evenasin-
gular choke point, or a set of points that together constitute a choke point, can
arbitrarily suppress legitimate traffic and thus fully violate the threat TP2.



Chapter 4

Secret Storage on Android

As noted in the requirement R1 we need to store digital identities in the PIA.
Subsequently, we enumerate and analyze approaches for secret storage on An-
droid in this chapter. To this end we start with an overview of Android security
in general and introduce important related terms.

4.1 Android Security

Android is an OS formobile phones and therefore has distinct security require-
ments fromOSes used in primarily in other domains (e.g. desktop, embedded).
A foundational understanding of the Android platformmodel is important un-
derstand how hardware supported security can provide enhancements.

4.1.1 Android Platform Security Model

TheAndroid platformsecuritymodel, as definedby the equally namedpublica-
tion byMayrhofer et al. [85], is a theoretical informalmodel that has informed
the design and implementation of Android. Even tough it was only published in
2021 and is based on Android 11, the describedmodel has been used informally
in the past and applies similarly to past releases of Android.We highlight some
aspects, those relevant to our goals, of this model.

Rule 5 of the security model states that applications are security principals. This
is in contrast tomany other OSes that assume actions of an application are per-
formed on behalf of a user. E.g. consider how UNIX related OSes inherit the
user/group of the logged in individual to executed applications. Since apps are
not considered fully authorized agents on behalf of the user, the former do not
run with the context of the logged in user. Instead, they are treated as security
principals, meaning each app runs under a dedicated user.

This ties into rule 1 of the security model, the Multi-party consent. The three
main parties in the Android ecosystem are

the user,

the platform vendor, and

the app developer.

All of them need to be in agreement to perform an action. In the world of An-
droid we distinguish between

active subjects (users and application processes) and

passive objects (files, network sockets and IPC interfaces,memory regions,
virtual data providers, etc.)

31
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4.1.2 Hardware Supported Security for Android

TEE for Android

The Android Open Source Project (AOSP) includes Trusty [4], a TEE that works
in close collaboration with the Android OS itself. Trusty is made up of several
components that work together, namely

a secure world kernel,

the Trusty Driver, a Linux kernel driver that belongs the Android OS and
interfaces with the secure world kernel, and,

the Trusty Lib, a userspace library that facilitates communication with
trusted applications over the aforementioned kernel driver.

The Trusty API1, which is the interface between these three components, is
subject to change. Implementations of the secure world kernel are custom on a
per-SoC basis. This means that OEMs and SoC vendors in the Android domain
each have their own secure world kernel implementation, e.g.

Google created the Trusty Kernel [4] (based on the Little Kernel embedded
OS),

Qualcomm Trusted Execution Environment (QTEE) runs on Qualcomm
SoCs [107],

Samsung TEEgris runs on their own Exynos chips [43, 117] and

Huawei iTrustee runs on (at least one) Kirin SoC [42].

All of the aforementioned kernels are based on ARM TrustZone.

Embedded Secure Element (eSE) and Alternatives

Several current Android devices, mainly high-end ones and a few select mid-
range ones, contain an embedded SE (eSE), i.e. an SE that is resides on the
motherboard of the mobile phone. The main AP, driven by its requirements
for a big feature set (latest ISA with numerous extensions) and performance,
has significant complexity. In contrast to this, an eSE only needs to support a
specific tailored OS and very few select applications. Therefore, it has a sub-
stantially smaller attack surface than a full-fledged main AP. As Mayrhofer et
al. [85] note, this difference can be seen in security issues related to the main
AP (e.g. Spectre/Meltdown) and dependent hardware (e.g. Rowhammer affect-
ing the main memory), all of which can pose a threat to applications running
on amain AP TEE, but not on an eSE.

As section 2.6.1 elaborates SEs were originally included into smartphones to
provide ahighly securebasis for digitalwallets.However, over timedigitalwal-
let applicationswere switched to thehost cardemulations schemesand thereby
no longer depend on SEs. More recently, Google pushes for the usage of SEs to
increase the security of the Keystore system (cf. section 4.2.2).

The first implementation of an eSE to strengthen the Keystore system was the
Google Titan M chip, a security chip introduced alongside the Google Pixel 32.
As Melotti et al. [86] found, previous to their publication, not much informa-
tionwas available about the internals of the TitanM chip and the firmwarewas

1https://source.android.com/docs/security/trusty/trusty-ref
2https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

https://source.android.com/docs/security/trusty/trusty-ref
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
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not released as open source (despite such promises in the announcement blog
post). Nugget OS, abbreviated nos, is the nameof theOS running on theTitanM
chip. The hardware security module itself is referred to as “citadel”. Further-
more, with the help of the custom structure-aware black box fuzzer developed
by Melotti et al. [86], they proved that the security of the Titan M chip is not
insurmountable by uncovering multiple vulnerabilities in the chip.

In order to expand the adoption of (e)SEs tomore OEMs, Google and Secure El-
ement (SE) vendors founded a collaboration effort called Android Ready SE Al-
liance [51]. As part of this alliance, SE vendors and Google collaborate to design
open-source hardware backed security applets that can run on SEs. These ap-
plets are meant to address use cases around Strongbox (cf. section 4.2.2), dig-
ital keys for cars and homes, identity credentials (e.g. mobile driving license
and national IDs) and e-money solutions involving digital wallets. Ultimately,
awider adoption of SE and the accompanying applets is going to strengthen the
security of the Android platform as awhole and provide desirable functionality
for mobile devices.

While the vast majority of modern SE deployments in mobile phones are eSEs,
there are other options. Specifically, Android supports SEs located inside UICC
chips. With the continued trend for increased security we expect that the ma-
jority of new UICC models are going to feature SE capabilities. Another rising
trend is the usage of embedded UICC (eUICC) chips that are fixed components
of themobile phone. Using an UICC-based SE is only really sensible if the UICC
in question is an eUICC. Otherwise, each switch of themobile network operator
(MNO),meaning the physical UICC card is swapped,mean the loss of all sensi-
tive data stored into SE. Data migration between the old UICC and the new one
is not possible, since data stored into a specific SE should remain sealed there
and not be extractable. In order to maintain generality, we are going to use the
general SE term from here on.

SE Access Control

An OS running applications from untrusted third parties, as is the case with
Android, needs to restrict access to connected SEs in order to avoid malicious
abuse [46]. One very common threat are denial of service attacks (e.g. exces-
sive allocation of keys or selection of non multi-selectable applets) prohibit-
ing legitimate use. This is addressed by the Secure Element Access Control stan-
dard [46], which is tightly connected to the OpenMobile API (OMAPI) and im-
plemented by Android (cf. section 4.2.4). The general architecture consists of
access rules that reside inside the SE. These are retrieved by the access control
enforcer, in our case Android, and applied to rich execution environment (REE)
applications. An access rule consists of

a DeviceAppID, uniquely identifying an REE application, and
an AID for the applet in the SE.

Specifically for Android, the DeviceAppID is the “SHA-1 hash of the certificate
used to sign the APK” [44].

According to the Secure Element Access Control standard [46], the SE issuer3 de-
ploys the access rules over the air (OTA). At the very least this is required as an
initial setup step and can be updated later on. Application providers for third

3More precisely, whatever legal entity has organizational control over a deployed SE. For an eSE
or eUICC that ismost likely an original equipmentmanufacturer (OEM) or original deviceman-
ufacturer (ODM), whereas a UICC is controlled by a mobile network operator (MNO).
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party applets deployed into a SE can update their own access rules, called Ac-
cess Rule Application Client (ARA-C), on their own terms via an OTA mech-
anism. The aggregation of all access rules is exposed by the SE to the access
control enforcer.

4.2 Analysis of APIs

The PIA stores digital identities and related auxiliary data. For our purposes of
this analysiswe logically partition data related to each identity into the follow-
ing 3 components:

IC1 Main credential: The entire credential issued by the IA, spanning all at-
tributes and metadata. Notably, this includes biometric data, like embed-
dings, essential to the functionality of our system. One exception to this,
i.e. not included in this component, is the secret key associated with this
identity.

IC2 Secret key: The secret signing key of the ZKP signature scheme associated
with the specific identity. It is used by the PIA to create derived credentials
from the original one. Because of the specific requirements we treat it as a
separate component. While both measures M2 andM6 are guiding the im-
plementation, the latter trumps the former due to it’s critical nature for the
overall project.

IC3 Auxiliary data: Aside from the main credential, as issued by the IA, the PIA
maintains some auxiliary data for each digital identity. E.g. a flag whether
the identity is active and should be used by the PIA, or cosmetic color infor-
mation used by a smartphone PIA for visualization.

For eachof the enumerated storage techniquesweprovide anoverviewof func-
tionality, an analysis concerning the compatibility across the broader user ba-
sis andfinally an analysis of suitabilityw.r.t. to our threatmodel and the related
measures.

4.2.1 Data and File Storage

Android offers several APIs for storing regular data and files [54]. Each come
with their own advantages and disadvantages.

App-specific storage: This API is similar to the ones offered by other OSes
and allows arbitrary text or binary data to be placed in one or more files.
All created files and directories reside in dedicated directories only acces-
sible by the app. There are two variants: Internal storage is always avail-
able, whereas external storage tends to provide more space at the cost of
availability. On some devices the latter type of storage is physically located
on a removable media. The former can be located via getFilesDir() or
getCacheDir(), while the latter can be found via getExternalFilesDir()
or getExternalCacheDir().
Shared storage: As the name implies, this API is used to store files that
are shared across apps and can be managed by the user directly (via file
manager apps). Technically, there is a distinction between media files, ac-
cessed via the MediaStore API, and all other files, managed via the Stor-
age Access Framework (SAF). In SAF an entity offering files implements
a subclass of DocumentsProvider, whereas a consumer of files triggers an
intent action of type ACTION_CREATE_DOCUMENT, ACTION_OPEN_DOCUMENT or
ACTION_OPEN_DOCUMENT_TREE.
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App preferences: This API is used to store simple key-value pairs for the app
and supports somebasic data types for values (boolean, float, integer, long,
string and string set). Instances of a SharedPreference object can be re-
trieved via getSharedPreferences() or getPreferences().
App database: Using this API, a developer can store structured data in an
Android Jetpack Room database [57]. While conceptually similar to the app
preferences, this is amore powerful andmature approach for storing larger
structured datasets. Developers include the Jetpack Room dependencies,
located under the androidx.room coordinates, in their build scripts and can
subsequently use the library in their app.

The best choice depends on the requirements of the use case in question. All of
these APIs are relatively easy to use, convenient for storage of simple proper-
ties (app preferences), structured data (app database), or arbitrary data (app-
specific or shared storage), and nowadays allow usage of ample space4. Fur-
thermore, since theyare a corepart of theAndroid functionality, thesemethods
of data storage are available on all Android devices.

The usage of shared storage via the MediaStore API requires permissions for
most use cases [54]. Apps targeting Android version 9 or older were required
to have the READ_EXTERNAL_STORAGE/WRITE_EXTERNAL_STORAGE permission to
read/write any file outside of the app data directory, Starting with Android 10,
an app only requires the READ_EXTERNAL_STORAGE permission if it needs to ac-
cess other apps’ files and the WRITE_EXTERNAL_STORAGE permission no longer
has any effect. In practice this means that limited functionality is available on
recent Android versions (starting with 10) even without permissions. The SAF
on the other hand does not require permissions at all.

Security Caveats

However, none of these APIs use dedicated security mechanisms like a TEE or
SE to harden access to data. Instead, data is simply stored in the file system,
physically residing either on the internal flashmemory or an SD card.While the
Linux discretionary access control (DAC) does protect app-private data from
other apps and (mostly) the user, the Android system itself has full access.

Another problem is the possibility of exporting app-specific data via the adb
backup command. Such a backup contains, for each app, the APKfile(s) and the
following app-specific data:

Nearly the entire internal app data directory, comprised ofu internal app-specific storage (files sub-directory),u app preferences (shared_prefs sub-directory) andu app databases (databases sub-directory), as well asu all other sub-directories (e.g. WebView data with a browser profile).

The only exceptions to this areu caches (code_cache and cache sub-directory) andu a specific no_backup sub-directory5.

4While therearenoartificial hard limits concerningdiskusageby individual apps inAndroid itself,
someOEMsopt towarn users if an app takes up excessive amounts of storage. Thus, a single app
may use the entirety of the userdata partition in theory.

5Which can be found via the getNoBackupFilesDir() on the app context.
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The external app-specific storage is also included.

Effectively, this means that users do have access to supposedly app-private
data.

Note that this behavior has changed with Android 12. Before that release,
apps were able to opt-out of this manual backup mechanism by declaring the
android:allowBackup in theirmanifest file to be false. All apps that target API
level 31 or higher are no longer going to be included inmanual backups via adb
backup6 [53, 101]. In line with our observation, Google states that this is “to
help protect private app data”.However, apps targetingAPI level 31 or abovemay
opt-in to the manual backup by declaring the android:debuggable attribute7
in their manifest to be true.

Usage in Digidow

Even though all stored identity data in a PIA is about the associated individ-
ual, and they exert full legal control of it, it would be ill-advised to place such
data in shared storage. Doing so would enable arbitrary read or write access by
many other apps, all of them untrusted independent security principals in the
Android ecosystem. I.e. we do not give the user easily accessible full technical
control over their data. The legal control, together with other trust measures,
has to be sufficient for an individual to trust their PIA. The manual backup
mechanism via adb backup is a double edged sword. As a power user, it is con-
venient that one can inspect the app data directory. However, a regular user
shouldneverneed this access and it is apossible extractionmechanismfor sen-
sitive data that can be used under duress (e.g. by border agents). At this point
in time we don’t have a strong opinion on this subject and trust the default
behavior of the Android platform with the latest API level. We cannot identify
any benefit to the external app-specific storage for our use case either. The re-
maining options, namely internal app-specific storage, app preferences and
app databases, all ultimately place their data in the internal private data direc-
tory of the app. These APIs aremeant for different types of data (unstructured,
key-value and structured), but fundamentally provide the same security guar-
antees. Hence, for our purposes we will collectively refer to these as internal
app-private data.

All three components of a digital identity can be stored in the internal app-
private data. In fact, this will be our working assumptions for now and acts as
baseline. Any other APIs or approaches to storing one or more component(s)
of a digital identity will bemeasured against this naïvemodel. However, that is
not an endorsement of internal app-private data APIs from a security and pri-
vacy point of view. Malicious actors with system level privileges can read and
modify internal app-private data as they please. There are many possible ap-
proaches how amalicious actormay achieve such privileges, e.g. an unpatched
vulnerability (chain), zero-day vulnerability or possibly even a user granting
system-permissions for apps running on a rooted device. Clearly, such issues
occur often enough that itmotivated the platformvendorGoogle to create ded-
icated APIs for secure storage of key material or identities.

6At the same time, Android 12 also renames the Android Auto Backup to Cloud backups. These con-
tinue to respect the android:allowBackup attribute of apps targeting API level 31 (default is
true). In parallel to this, it also introduces the new Device to Device (D2D) transfer, which allows
a direct transfer of app-private data to a new device and is always possible, regardless of the
aforementioned attribute.

7Note that this flag has severe security implications because of the ability of a debugger to inject
and execute arbitrary code inside the debuggable app.
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4.2.2 Keystore System

The Android keystore system is an API to securely store cryptographic
keys [50]. Once a key is loaded into the keystore it can no longer be exported.
From then on, the usage is constrained by key use authorizations, a list of
conditions that need to be met in order for the key to be usable in a specific
setting. Key use authorizations can be grouped into the following categories:

cryptographic algorithms and parameters, e.g. operations or purposes (en-
crypt, decrypt, sign, verify), padding schemes, block modes and digests
with which the key can be used;

temporal validity intervaldefininga time rangewherein thekey is considered
valid;

user authentication prompting the user to performa lock screen authentica-
tionand/ora strongbiometric authentication, i.e. requiringexplicit consent
by the user for each usage of the key.

The Android keystore supports key attestation, essentially a challenge re-
sponse process between a trusted host (the verifier) and the keystore system
(the prover), where the latter cryptographically asserts metadata of a stored
key.

There are different implementations of the keystore system in Android and the
one in use depends on the API level and hardware capabilities [50]. Keymaster
and Keymint together are the original implementation of the Android keystore
system that can optionally be backed by a TEE. In any case, key storage on the
host system is also available. The newer implementation of the keystore sys-
tem, available on devices with an SE running Android 9 (API level 28) or later,
is referred to as Strongbox Keymaster. Device running Android 9 without an SE
continue to use the regular Keymaster and Keymint implementations.

Security Levels

Each key stored in the keystore system has an associated security level (called
attestationSecurityLevel in the ASN.1 schema of the key attestation). The
following values can occur:

Software (0): This keywas created and ismanagedby software runningon
themainAndroidOS. Even though such a key doesnot use anyhardware se-
curity features and is thus vulnerable to malicious actors with system level
privileges, it is better than storing the key in the application directly. Since
the key material never resides in app process memory, any attacker that
gained privileges of the executing app cannot access it.

TrustedEnvironment (1): Whenever this value is observed, it means that
the key resides in a TEE (cf. section 4.1.2). The extraction of such a key is
protected from attackers with system level privileges (e.g. an exploitable
security vulnerability in the customized Linux kernel, the “main” kernel
of Android). However, without a user-bound key use authorization an at-
tacker with system level privileges can use the TEE keystore as an oracle to
performmalicious key use.

StrongBox (2): This key is beingmanaged in an SE (cf. section 4.1.2). Going
beyond the guarantees of the previous level, the key material stored with
this security level is considered especially well protected. Based on the na-
ture of an SE, this includes resistance against issues related to the main AP
and dependent hardware, e.g. Spectre, Meltdown and Rowhammer.
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Note that the security level of the key does not have to match the highest se-
curity level offered by the device. If the specified combination of key type,
key size and cryptographic parameters is not supported by the highest secu-
rity level of the device, the keystore system is going to use a best-effort ap-
proach. Whenever the usage of an SE is mandatory, a developer can specify the
setIsStrongBoxBacked()flag in the KeyGenParameterSpec.Builder class and
subsequently akeymayonlybe stored inadedicatedhardware securitymodule.

API Feature Overview

From a developer point of view the keystore system consists of APIs that orig-
inate from the Java Cryptography Architecture (JCA) by Oracle [94] and, thus,
adopts terminology and API interfaces from there, but was also extended by
Google in several places for their ownpurposes inAndroid. On ahigh level view,
depending on the required usage scenario, an application designer can choose
between the following two API “families”:

The KeyChain API is used tomanage system-wide credentials and has been
available since Android 4.0 (API level 14). Application can use this API to re-
quest some credential. Upon such a request, the user chooses a suitable cre-
dential in a system-providedUI and the selected credential is then returned
to the application. While the classes concerned with the actual algorithms
and keys come from JCA, the KeyChain class itself is an addition by Google.
In contrast, the Android keystore provider feature allows secure storage of
credentials in an app-private way since Android 4.3 (API level 18). Since
these credentials are per definition scoped to the app, there is no need
for a selection UI. While the KeyStore API originates from JCA and, there-
fore, has been around since the inception of Android8, the Android key-
store provider feature specifically refers to an instance with the type value
AndroidKeyStore [19]. Only such an instance can, in case of available hard-
ware and software support, store keys with a higher security level than
Software.

Note that Android developers should not provide an explicit value for the
provider parameter of the JCA instance retrieval methods, but rather use the
overloads without these and let the platform figure out the optimal provider
on its own [130]. Additionally, the Android Jetpack offers a wrapper API that
simplifies the usage of the Android keystore system [58].

More concretely, the current list of supported cryptographic algorithms, en-
tailing key type and/or cryptographic operations, is limited to a selection of
well-known primitives and sensible combinations of these. Namely, for the
Android keystore provider feature these are:

Cipher algorithms are a triple of a symmetric or asymmetric cipher, block
mode and padding scheme, together used to encrypt/decrypt data (e.g.
AES/CBC/PKCS7Padding,RSA/ECB/OAEPWithSHA-256AndMGF1Padding),

KeyGenerator and SecretKeyFactory algorithms handle symmetric keys
(e.g. AES, HmacSHA256), the former creates new ones altogether while the

8Android offersmany cryptographic facilities [49], spanning awide range of keys and algorithms.
Since Android API level 1 developers could access software-only, but feature rich KeyStore im-
plementations that allow writing cryptography code based on the JCA. E.g. an instance of the
KeyStore with the PKCS12 type value. Some of the algorithm implementations come from the
Bouncy Castle library, which provides numerous cryptography algorithms and exists for sev-
eral platforms9. This is the source of two identifiers for KeyStore instance types [19], namely
the eponymous BouncyCastle and the BKS (short for Bouncy Castle Keystore).
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Figure 4.1: Distribution of different Android versions according to Google as of
2022-05-09. Screenshot obtained from Android Studio Chipmunk
2021.2.1 Patch 1 running on Linux [52].

latter converts an existingkey specification (containinggivenkeymaterial)
to an opaque Key object and vice versa,
KeyPairGenerator and KeyFactory algorithms handle asymmetric keys
(e.g. EC, RSA), the former creates new ones altogether while the latter con-
verts an existing key specification (containing given key material) to an
opaque Key object and vice versa,
the KeyStore API is at the heart of the eponymous keystore system and
manages cryptographic keys and certificates stored at least with system
level privileges, whereas each entry can be any of the symmetric or asym-
metric keys supported by the previously named API abstractions,

Mac algorithms perform message authentication code signing and verify
operations (e.g. HmacSHA1, HmacSHA256)10 and

Signature algorithms combine a cryptographic hashing algorithm (e.g.
SHA256, SHA1) with an asymmetric cipher (e.g. ECDSA, RSA) to perform
signing and verification operations, where the public key is sufficient for
verification.
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Compatibility Across User Base

We analyze the compatibility of the keystore system across the Android user
basis by cross checking the introduction of the associated APIs against the cur-
rent usage statistics for Android. Google itself provides data on active Android
devices, offering aggregated statistics on the platform version, screen size/
density and supported graphics API (versions)11. The latest update to the plat-
form usage statistics considered in this thesis happened inMay 2022 and pro-
vides data formajor andminor releases of Android from4.1 through 11, cf. Fig-
ure 4.1. According to this data

the KeyChainAPI (available startingwith Android 4.0, API level 14) is avail-
able for 100% of users and

theAndroid keystoreprovider (available startingwithAndroid4.3, API level
18) can be used by 99.7% of users.

Many of the algorithms supported by the Android keystore provider feature
were added in later versions. The latest additionsweremade inAndroid 6.0,
i.e. API level 23 and correspond to 95.6% of active users.

Another interesting data point is the percentage of active Android users
that employ the StrongBox Keymaster with an eSE. Unfortunately we do
not have any good numbers on this. Via the platform statistics we can in-
fer an upper bound (Android 9, API level 28) at roughly 75.1% of active An-
droidusers. Furthermore, industry experts atEurosmart estimate thenum-
berofoverall shippedeSE todevicemanufacturers, includingmobile phones,
tablets, navigation devices, wearables and other connected devices without SIM
application, at 490millionunits in 2021 (vs. 450million in 2020) [36].How-
ever, thesedatapoints donotpermit clear conclusions for thismetric.Many
open questions remain: How many of the shipped eSE units end up in An-
droid devices? How to combine statistics on active users with others on
shipped units?.

Suitability for Usage in Digidow

As the name suggests, wewould like to use the keystore to store the secret keys
associated with the digital identities, i.e. component IC2. While the PIA needs
to sign messages sent to other Digidow entities via the secret key, there is no
need to access or distribute the raw value of the secret key. Thus, we want to
use the key pair generation inside the keystore system. In case of a StrongBox
Keymaster, such a usage wouldmean that the secret key is sealed into an SE. In
our case we want to restrict usage

to a cryptographic signing operation,

prohibit usage of the secret key before or after the validity of the accompa-
nying credential, and

(possibly) bind the usage to user authentication.

The last key use authorization is a trade-off between security (each usage re-
quires explicit user consent) and convenience (no interaction required, i.e. PIA
acts independent). We propose the following three policies as a starting point:
Explicit consent is required for
10In contrast to the subsequent Signature algorithms a MAC needs the secret symmetric key for

both signing and verification.
11While most of this data can be found at the “Distribution Dashboard” located at https://
developer.android.com/about/dashboards, the statistics on platform versions can only be ac-
cessed via Android Studio in the Android Platform/API Version Distributionwindow [52].

https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
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1. all usages,

2. only the first usage within a certain timespan or

3. under no circumstances.

There is no “correct” answer to this and thus the policy choice varies based
on several factors. An IA may enforce a certain policy to have reasonable
confidence in the secure usage of issued credentials. On the other end, an
individual may configure this aspect on each identity to account for their
own threat model. However, per the design of the keystore we can only
set this policy once at the time of the key generation or import. Overall,
from a conceptual level, the keystore is a good fit to handle the secret key.

Analyzing the technical point of view, we review the list of supported algo-
rithms/keys of the keystore system against our shortlist of ZKP protocols pre-
sented in measure M6. Within the former (cf. the list of supported algorithms
by Google [50]) we are interested in

asymmetric keys, where the KeyPairGenerator and KeyFactory APIs sup-
portu RSA with key sizes 512, 768, 1024, 2048, 3072 and 4096 andu EC with the named curves P-224 (i.e. secp224r1), P-256 (i.e. secp256r1

and prime256v1), P-384 (i.e. secp384r1) and P-521 (i.e. secp521r1) and

signature algorithms, where the Signature API supports nearly all pairs
made up of the followingu cryptographic hashing algorithms, including NONE, MD5, SHA1, SHA-

224, SHA-256, SHA-384, SHA-512 andu the asymmetric cryptosystemsECDSAwith thenamedNIST curves, RSA
and RSA/PSS.

Note that this list is exhaustive for Android 6.0 (API level 23) and above, but
can only be guaranteed for the software security level. Support for higher se-
curity levels is subject to further restrictions. The preferred StrongBox level
with an SE only mandates support for ECDSA with P-256 as signature algo-
rithm and key12, as mandated by the Android Compatibility Definition Docu-
ment (CDD). Beyond that, a hardware Keymaster device (either TEE or Strong-
Box) can optionally support P-224 (i.e. secp224r1), P-384 (i.e. secp384r1) or
P-521 (i.e. secp521r1). In contrast, the latter is comprised of

the Boneh-Boyen-Shacham (BBS+) signature schemewith pairing friendly
elliptic curves as keys (cf. [115]), common examples includeu the Barreto-Naehrig (BN) curves (e.g. BN256I, BN254N, BN512I) andu the Barreto-Lynn-Scott (BLS) curves (e.g. BLS12_381, BLS48_581),

and

the Pointcheval-Sanders (PS) signature scheme with, again, pairing
friendly elliptic curves as keys. We found a Rust implementation named
ps-sig13 for the pairing friendly curve BLS12_381.

12See the current version of the Keymaster (currently version 4) Hardware Abstraction
Layer (HAL): https://android.googlesource.com/platform/hardware/interfaces/+/refs/tags/
android-12.0.0_r1/keymaster/4.0/IKeymasterDevice.hal#444.

13The Rust implementation ps-sig at https://github.com/evernym/ps-sig is based on
the amcl_wrapper Rust library at https://github.com/lovesh/amcl_rust_wrapper.
While the latter supports four different elliptic curves (secp256k1, ED25519,
BN254 and BLS12_381), cf. https://github.com/lovesh/amcl_rust_wrapper/blob/
9d4d4e2d009e3c8c2de17e97e9a4d36721896496/src/lib.rs, the former is only implemented
and validated for the pairing friendly curve BLS12_381 (cf. https://github.com/evernym/ps-
sig/blob/b1a1d530a8fa65a80212c8f8f5f8bd8c80a75365/Cargo.toml).

https://android.googlesource.com/platform/hardware/interfaces/+/refs/tags/android-12.0.0_r1/keymaster/4.0/IKeymasterDevice.hal#444
https://android.googlesource.com/platform/hardware/interfaces/+/refs/tags/android-12.0.0_r1/keymaster/4.0/IKeymasterDevice.hal#444
https://github.com/evernym/ps-sig
https://github.com/lovesh/amcl_rust_wrapper
https://github.com/lovesh/amcl_rust_wrapper/blob/9d4d4e2d009e3c8c2de17e97e9a4d36721896496/src/lib.rs
https://github.com/lovesh/amcl_rust_wrapper/blob/9d4d4e2d009e3c8c2de17e97e9a4d36721896496/src/lib.rs
https://github.com/evernym/ps-sig/blob/b1a1d530a8fa65a80212c8f8f5f8bd8c80a75365/Cargo.toml
https://github.com/evernym/ps-sig/blob/b1a1d530a8fa65a80212c8f8f5f8bd8c80a75365/Cargo.toml
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Clearly, there is no overlap, neither for the keys nor for the signing algorithms.
As a consequence, there is no straight forward technical approach to satisfy
our requirements. We considered an indirect approach envisioning the usage
of the available high level primitive operations of the JCA Signature API (sign
and verify) to emulate a ZKP protocol inside the keystore system. Unfortu-
nately, our assessment resulted in negative findings. Overall, this inhibits the
usage of the keystore system to handle the secret keys associated with the dig-
ital identities, i.e. component IC2.

The functionality of the keystore does not lend itself to storing arbitrary data,
as would be required for the components IC1 and IC3. Even if we could seal ar-
bitrary data into keystore, this would not be sensible for our purposes. Per de-
sign the PIA needs to share these components with other Digidow entities, like
sensors and verifies, or present them to the individual themself in a UI. In all
of these instances the identity data needs to be processed and thus has to be
available in plain text on the various Digidow entities.

4.2.3 Identity Credentials API

The Identity Credentials API (also known as security-identity-credential
Maven artifact ID) is purpose-built for the the secure storage of user iden-
tity documents [3, 56]. Google intentionally designed the API in a generic and
abstract fashion. I.e. the semantics of data being exchanged with the creden-
tial verification devices and Issuing Authorities (IAs) are explicit non-goals of
this feature. However, the data structures that are part of this API are based on
the ISO/IEC 18013-5 standard [68]. The ISO/IEC 18013-5mobile driving licence
(mDL) application standard [68] defines an interface specification for mobile
driving license (mDL) applications and includes a generic specification for the
exchange ofmobile documents (mdoc) as underlying basis (cf. section 2.6.2 for
details). Specifically, said standard builds on previous ones and

specifies thatmdoc requests and responses are encodedwith Concise Binary
Object Representation (CBOR) [17], a binary serialization format,

use the related Concise Data Definition Language (CDDL) as notational con-
vention to express CBOR data structures as text [12], and

CBOR Object Signing and Encryption (COSE) as cryptographic operations on
that data format [118].

Due to its generic nature the Identity Credentials API is designed to work with
mdocs in general, rather than be restricted to mDLs. The latter is an instance
of the former, but uses the specifiedmDL data elements from the standard, all
located under the namespace org.iso.18013.5.1.
Briefly speaking, the security requirements of the ISO/IEC 18013-5 standard
mandate that

1. credentials are authenticated by their issuing authority (IA) and

2. that communication between anmdoc holder andmdoc reader satisfies the
requirements of a secure channel, namely including proper (mutual) au-
thentication, confidentiality, and integrity.

This is satisfied by the following approaches in the standard:

1. Every credential issued by an IA is authenticated by a digital signature an-
chored in a PKI. By extension of trusting the root certificates of the PKI, a
verifier also trusts the signed credentials issued by any IA.
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2. Addressing the security requirements of the secure channel between mdoc
holder (i.e. device) andmdoc reader is multifaceted.

a) The mdoc authentication of the device to the reader is done via the
SDeviceKey asymmetric key pair. After being initially generated on the
device, the public part is signed by the IA and thus embedded into a cer-
tificate during credential provisioning, while the private one remains
on the device and is used by it to sign data elements in the mdoc re-
sponses. Due to privacy considerations the device wants to have many
IA-signed SDeviceKey key pairs at their disposal, allowing rotation or
possibly even single usage (akin to a TAN). This hardens against or even
prohibits fingerprinting based on the key pair presented to the mdoc
readers, even if multiple ones collude.

b) Conversely, but technically an optional component, mdoc reader au-
thentication is used to authenticate the mdoc reader to the device. Is-
sued credentials can lock entries behind access profiles, which may in-
clude a reader certificate. Subsequently, only properly signed mdoc re-
quests of the reader are fulfilled by the device.

c) Encryption and integrity is satisfied by the usual combination of a hy-
brid cryptosystem. During session establishment both parties generate
elliptic curve key pairs (EDeviceKey and EDReaderKey) and perform in-
band key exchange. Subsequently, the initial keymaterial from that ex-
change is derived via a KDF into two secret session keys (SKDevice and
SKReader). These are then used for encryption with a symmetric block
cipher and an authenticated block mode. An authenticated block mode
ensures both confidentiality and integrity of transmitted messages.

The ISO/IEC 18013-5 standard defines a cipher suite to be a combination of
cryptographic primitives that are used to secure the communication between
mdoc holder and mdoc reader. At the time of writing, there is only one cipher
suite (with the ID 1) containing the following primitives:

ECKA-DH (with support for 11 different curves),

HKDF-SHA-256,

AES-256-GCM and

HMAC-SHA-256.

These primitives are currently state of the art and (assuming correct usage)
considered secure.

Extended Compatibility via Jetpack

The full-fledged version of the Identity Credentials API, entailing a dedicated
credstore system service and the Identity Credential HAL as part of the An-
droid OS, was introduced in Android 11 (API level 30) and requires secure hard-
ware. As ofMay 2022 only 35%of active Android users runAndroid 11 (API level
30) [52] andaneven smaller (unknown)percentageof theseusers ownamobile
phone with the required secure hardware.

The Identity Credentials API is also included in the Android Jetpack support li-
brary. This is Google’s usual approach to such a feature adoption dilemma and
expands (in this case) compatibility to Android 7.0 (API level 24), the equiva-
lent to approximately 91.7% of users.

From a developers perspective both variants of the API work exactly the
same. If available, the Jetpack variant (located under androidx.security.
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identity) simply calls the native platform variant of the API (located at
android.security.identity). Otherwise, the Jetpack variant uses a Keystore-
backed implementation. Google notes the following concerning the security of
these approaches [56]: “While the Android Keystore-backed implementation does
not provide the same level of security and privacy it is perfectly adequate for both
holders and issuers in cases where all data is issuer-signed”.

Data Exchange Formats and API

The basic (unextended) generic datamodel of CBOR is conceptually inspired by
JSONand the standard explicitly specifies conversionprocedures in both direc-
tions. More explicitly, we list the major primitive data types with their CDDL
keyword and CBOR type number:

bool (major type 7, additional information 20 or 21): Boolean value,

uint (major type 0): unsigned integer,

nint (major type 1): negative integer,

bstr or bytes (major type 2): byte string,

tstr or text (major type 3): text string.

Similar to JSON, CBOR supports

arrays for repetition of uniform data elements and

maps as a key-value dictionary, akin to JSON objects.

As alluded to, an mdoc is generic and can thus carry any CBOR element with
arbitrary complexity.
Developers start interacting with the Identity Credential API by acquiring an
instance of the IdentityCredentialStore class. A credential store can have
different capabilities, the most notable properties are:

A credential store is either hardware- or software-backed. Developers can
explicitly request an instance of the credential store with either capability.
However, hardware-backed instances are only supported with the native
Android OS implementation, which requires Android 11 and secure hard-
ware.

Optionally, a credential store with direct-access support allows accessing
credentials via specialized NFC hardware even while the Android OS is fully
powered off. Note, that according to the Jetpack API documentation [56]
any credentials stored in a direct-access store should always use reader au-
thentication, since a device with no running instance of Android OS cannot
verify the consent of the user.

Once the desired credential store instance is available, one can either retrieve
existingIdentityCredentialobjects or storenewones. Every single credential
is comprised of:

A document type string. Usually, credentials can be of any document type,
but direct-access credential stores can restrict support to a fixed number of
document types.

A list of one or more access control profiles, each with a locally unique ID.
Each profile can specify whether user authentication is required or not and
specify a timeout that defines how long a user authentication is valid. Ad-
ditionally, the specification of a reader certificate enables reader authenti-
cation and thus limits access to entities that can present signed mdoc re-
quests.
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A list of entries that store the actual data of the credential. A straight for-
ward approach would be the storage of each identity credential attribute in
a separate entry. Every entry hasu a namespace, which groups entries into logical groups (a credential can

contain entries for multiple namespaces),u a name, which is a string that, together with the namespace, uniquely
identifies the entry,u a value, which is a CBOR data element and can thus be any arbitrarily
complex semi-structured data, andu a set of access control profile IDs that are allowed to read this specific
entry.

A CredentialKey is an asymmetric key pair that is used to authenticate the
mdoc holder to the IA and persists across the lifetime of the credential. Af-
ter initial generation on the mdoc holder device, the certificate with the
public key is sent and remembered by the IA. Some mdoc holder opera-
tions (e.g. provisioning and deletion of credential) provide a signed cryp-
tographic proof for the IA.

One or more tuples of mobile security objects (MSO) and AuthKeys. An in-
stance of the former is a sufficient proof of validity of the mdoc to anmdoc
reader, whereas an instance of the latter is an asymmetric key pair that au-
thenticates themdocholder to themdoc reader. Theyare closely relatedand
part of the following provisioning workflow:

1. Initially, theAndroid identity application requests thegenerationof one
or more AuthKeys.

2. The credential store generates them and signs certificates for each key
with the persistent CredentialKey.

3. Next, each AuthKey certificate is submitted to the IA and the latter cre-
ates corresponding MSOs, each signed by the IA and returned to the
mdoc holder.

This concludes provisioning of the mdoc and the mdoc holder can now use
any MSO to authenticate the mdoc to an mdoc reader. The AuthKey of the
IdentityCredentialsAPI is equivalent to theSDeviceKeyof the ISO standard.

Note that the latest available version of the Jetpack implementation of the
Identity Credentials API is currently 1.0.0-alpha03 and thus still an alpha re-
lease.

Possible Usage in Digidow

The Identity Credentials API is, as the name implies, designed from the ground
up for the storage of identity documents. Thus, it is conceptually well aligned
with the general goal of Digidow and is the obvious approach to implement the
requirement R1 for the Android PIA. As per API design, we would like to store
components IC1 and IC2 inside the credential store, while keeping the auxiliary
data from component IC3 in the regular data and file storage. An entry in an
mdoc is well suited to store an identity attribute and thus the composition of
all entries/attributes logically forms a credential. Entries can be arbitrary bi-
nary values and can thus store biometric data (e.g. embeddings derived from
face detection) directly without a bloated binary-to-text encoding. Addition-
ally, the W3C Verifiable Credentials standard uses JSON as a de facto standard
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encoding format and therefore the interoperability between CBOR and JSON is
convenient for our purposes.

Currently, the ISO/IEC 18013-5standardpermits the followingdigital signature
algorithms and curves (i.e. key pairs):

“ES256”: ECDSA with SHA-256, using either curve P-256 (aka. secp256r1)
or brainpoolP256r1,

“ES384”: ECDSAwith SHA-384, using either curve P-384 (aka. secp384r1),
brainpoolP320r1 or brainpoolP384r1,

“ES512”: ECDSAwith SHA-512, using either curve P-521 (aka. secp521r1) or
brainpoolP512r1 or

“EdDSA”: EdDSA, using either curve Ed25519 or Ed448.

Support for the different signature algorithms and key sizes depends on the
implementation (cf. section 4.2.3). Specifically,

the Jetpack implementation has support for all mentioned algorithms
above (due to delegation to BouncyCastle), while

the native credential store implementation, backed by security hardware,
supports only ECDSA with P-256 for all keys14.

Section 4.2.2 lists the signature schemes (and associated key types) that we
currently deem suitable for our purposes in Digidow to fulfill the measure M6.
Unfortunately, there is no overlap between these and thus we are not aware of
a (simple) solution to reconcile the technical capabilities of the Identity Cre-
dentials API with the requirements of Digidow.

Another hardship is the immaturity of the Jetpack Identity Credentials API. At
the time of writing this work, said API is still an alpha release and thus subject
to possibly major changes.

4.2.4 Direct Secure Element Access

A secure element (SE) has a dedicated smart card OS and can run multiple ap-
plets (cf. section 3.1.3). Direct access via APDUs to these applets may enable
additional functionality that is not exposed via the Android OS (e.g. via the
StrongBox Keymaster).

In addition to applets that are pre-installed by the SEvendor, newones can also
beprovisioned. Dependingonhardware capabilities, one could develop andde-
ploy a customapplet for anSE that addresses the requirements of thePIA secret
storage.

APIs Driven by Standards

Android defines hardware compatibility for SEs via their Compatibility Test
Suite (CTS). Any SE that should be accessible by Android has to pass the Open
Mobile API (OMAPI) test cases and satisfy test vectors that are provided by
Google in the CTS [2]. Android implements the Open Mobile API (OMAPI) and

14See AIDL documentation for CredentialKey at https://android.googlesource.com/platform/
hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/
IIdentityCredentialStore.aidl#201 and AIDL documentation for AuthKey (i.e. signing key)
at https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/
identity/aidl/android/hardware/identity/IIdentityCredential.aidl#345

https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/IIdentityCredentialStore.aidl#201
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/IIdentityCredentialStore.aidl#201
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/IIdentityCredentialStore.aidl#201
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/IIdentityCredential.aidl#345
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/identity/aidl/android/hardware/identity/IIdentityCredential.aidl#345
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exposes all compliant SEs over this interface [44, 45]. Ultimately, after select-
ing a specific SE and opening a channel, an application developer exchanges
APDUswith the SE via the transmitmethod of the android.se.omapi.Channel
class.

ZKP via Elliptic Curve based Direct Anonymous Attestation (ECDAA)

The Crpyto library applets in some SEs15 support a group signature protocol
that is standardized under the name Elliptic Curve based Direct Anonymous
Attestation (ECDAA) [22]16. The standardized ECDAA protocol uses the CL sig-
nature scheme, one of the candidates listed inmeasure M6, and was originally
developed for the Trusted Platform Module v2.0. As Chen and Li [28] demon-
strate, the ECDAA protocol, here notably with trust anchored in security hard-
ware, can be used to implement both

a signature proof of knowledge (SPK), proving the possession of a secret
without revealing any piece of the secret (hence the name “anonymous at-
testation”), and

derived credentials that selectively disclose attributes, as shown via an
ECDAA-based design of the U-Prove system17.

The latter is a proof of concept for the usage of hardware supported ZKPs to
realize derived credentials.

Potential Usage in Digidow

Direct access to an SE provides a wide range of possible usages in Digidow. In
the simplest case, we would store the secret keys associated with the digital
identities, i.e. component IC2. The support of ECDAA in pre-deployed applets
of some contemporary SE hardwaremakes this approach possible from a tech-
nical perspective. ECDAAuses the CL signature schemeand thus, crucially, sat-
isfies the requirements frommeasure M6.
Depending on the storage capabilities inside such a secure hardware, wemight
want to store the main credential, i.e. the component IC1, inside the SE. Such
a scheme should involve asymmetric cryptography (or a similar cryptographic
operation) between the SEof the PIA and theDigidowentity that needs to oper-
ate on the plain text attributes inside a credential. Making credential attributes
inaccessible for the REE portion of the PIA provides stronger security against
attackers with system level privileges. However, a simple solution comes with
notable usability restrictions that prohibit even theDigidowmanager app from
showing attributes to the user. A possible trade-off is amore advanced scheme,
where a subset of sensitive attributes are hidden inside the SE, while less sen-
sitive ones are available to the REE.
Unfortunately, the complexities around SE access control and the current state
of TSMs makes it unlikely that a research project of our scale will receive the
necessary support from SE issuers. Without inclusion in the SE access rules,
we can neither use custom APDUs to call ECDAA related features from pre-
installed applets, nor deploy a custom applet into the SE.
15As far as the author is aware, that includes several NXP SEs: Namely at least SN100, SN200,

SN220, SE050 and SE051. This was inferred based on the certifications for these products at
https://www.commoncriteriaportal.org/products/#IC.

16The cited version of the proposed standard (dated 2017-04-11) is the exact version referenced
by the certification documents from NXP. Newer version are available and the latest one is
a “Draft 02” (dated 2018-07-02) at https://fidoalliance.org/specs/fido-v2.0-rd-20180702/
fido-ecdaa-algorithm-v2.0-rd-20180702.pdf.

17https://www.microsoft.com/u-prove

https://www.commoncriteriaportal.org/products/#IC
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.pdf
https://fidoalliance.org/specs/fido-v2.0-rd-20180702/fido-ecdaa-algorithm-v2.0-rd-20180702.pdf
https://www.microsoft.com/u-prove
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Figure 4.2: General architecture of white-box cryptography (WBC)with a fixed
key [18].

4.2.5 White Box Cryptography

Cryptography aims to ensure security properties on a secure channel between
two or more end points. Conventionally, any end point performing crypto-
graphic operations with a private/secret key is assumed to be trustworthy and
thus a mere oracle, i.e. an input-output black-box, from an attackers point of
view. Conversely, a white-box context assumes that such a sensitive crypto-
graphic operation is performed on a device with full access by an attacker [18].
Most notably, the latter has access to the binary of cryptographic operation and
can observe its execution. Thus, the goal of white-box cryptography (WBC) is
to protect sensitive key material from attackers in a white-box context.

TheKerckhoffs’principle, a standardassumptionofmoderncryptography,de-
mands that cryptographic algorithms themselves are consideredpublic knowl-
edge. Crucially, the parametrization with sensitive key material needs to be
protected. There are twomain approaches to WBC:

Either the hard coded sensitive keymaterial is compiled into the algorithm
in obfuscated format (cf. Figure 4.2) or

a dynamic white-box implementation receives a protected version of the
key at runtime and is processed by the obfuscated cryptographic operation
in a way that never exposes the “raw” key directly.

Usefulness for Digidow

The main advantage of WBC for Digidow is the possibility to implement ar-
bitrary group signatures and ZKP in the REE, while offering some protection
against attackers with system level privileges. In case of Digidow, the secret
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key,describedas component IC2,wouldbeunique for eachprovisionedcreden-
tial. Subsequently the WBC code for each credential will be unique and would
have to be provided by the IA. While we do have a weak trust assumption from
the PIA to the IA, executing arbitrary black-box code provided by the IA is
clearly problematic. Together, these circumstances mean that only a dynamic
WBC system is reasonable for Digidow.

Beyond the mere technical possibility, it should be emphasized that WBC is
inherently an obfuscation process. As such it is subject to an endless cat and
mouse game between researchers creating and breaking WBC schemes [15].
With a sufficiently large incentive, as would undoubtedly be the case for a wide
spread adoption of the Digidow system, any WBC scheme will be broken. Ul-
timately, while possible on a technical level, we are under the impression that
WBC does not provide sufficient security guarantees.



Chapter 5

Implementation of a PIA for Android

Even when adhering to modern software engineering practices, which in our
case heavily revolve around security and privacy aspects (threatmodeling, de-
signing conceptual security, and privacy measures), implementation work of-
fers a significant degree of freedom. Therefore, we believe it is important to
present the challenges and possible solutions of the implementation. This is
essential to communicate the full picture of our work around the Android PIA.

5.1 Auxiliary Requirements fromDigidow Project
Context

The larger Digidow project context gives rise to auxiliary requirements. Previ-
ously, otherwork streamsstarted thedevelopmentof a remote (i.e. standalone)
PIA,written in Rust, that is expected to run on a trusted host. This is in contrast
to the embedded PIA, running on the samemobile phone as the Digidowman-
ager app, that is being developed as practical part of this work. Refer to Fig-
ure 5.1 for a comparison. We envision code sharing between these two variants
has the following advantages and disadvantages:

+ Code reuse saves time that would be spent on implementing the same fea-
tures twice.

+ Single source of truth for business logic avoids potential inconsistent be-
havior.

+ Having a single implementation of the core data structures and business
logic reduces complexity and thushelpswithmaintainability. Furthermore,
this promises to help with semi-formal verification.

+ Rust, as modern systems programming, language offers a more secure
foundation and eliminates some classes of memory errors entirely via lan-
guage design.

- Initial upfront development cost for unified core code base.

- Language interoperability between the official Android development lan-
guages Kotlin/Java1 and Rust is immature and thus requires extra effort.

Overall, we believe that the advantages outweigh the downsides and thus opted
for a shared PIA core code base. This means the following auxiliary technical
requirements, in addition to requirements R1 through R3 introduced in sec-
tion 3.2.1, arise for the embedded PIA and the (closely related) Android Digidow
manager app implementation:
1Alternative approaches for the Android Digidowmanager app (e.g. C++ via NDK, C# via Xamarin
or Unity, Lua via Corona, JavaScript via PhoneGap) were considered, but none have significant
unique aspects that would warrant their usage for our purposes. Therefore, the default choice
for Android app development are the two first-class languages supported by Google.
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Usage of inter-process communication (IPC) mechanisms from the OS
(e.g. files, TCP/IP or Unix sockets, pipes, shared memory, signals) to ex-
change data between two or more processes implemented in different lan-
guages [125].

Many languages offer one ormore foreign function interfaces (FFI) that al-
low one programming language to call another within the same process.
Themajority of FFIs arebetweenahigh level languageand the systemspro-
gramming language C2.

A runtime, also called process virtual machine (VM), executes code in a
hardware independent execution environment. It supports one or more
high level programming languages that are all based on the same abstrac-
tions (e.g. data types,memorymanagement) and therefore commonly fea-
ture interoperability between each other. Such applications spanningmul-
tiple languages are called polyglot.

In our specific case we need interoperability between

the official Android development languages Kotlin/Java (cf. require-
ment R5) and

Rust, due to requirement R4.

Rust, as an unmanaged systems programming language, produces platform
dependent native code. Our implementation platform of choice, Android, pro-
vides the Android Native Development Kit (NDK) as FFI for integrating native
code with the official Android development languages [55]. The provided tools
enable the usage of the Java Native Interface (JNI) [96]. JNI is a well speci-
fied standard interface between high level JVM languages and native code. This
standardenablesportability forbothhigh level and low level codeacrossdiffer-
ent conforming JVM implementations. Subsequently,wewill present thebasics
of JNI, including the different strategies for handling objects and data struc-
tures over the FFI.

JNI Basics

We introduce the basics of JNI via the official documentation by Oracle [96].
This establishes the general features and rules of the standard FFI offered by
the JVM.

As a starting point, the interface pointer of type JNIEnv points to an array of JNI
function pointers, each offering some features of the JNI interface. It can be
used by the low level code to perform a call to the JVM and is provided in all
calls from a high level language to the low level code. Due to themultithreaded
nature of the JVM and the high level languages running on it, compilers for low
level code need to be multithread aware. Developers need to be mindful of the
thread dependent nature of the interface pointer. The well defined specifica-
tion has clear rules on mapping method names of the high level language to
qualified procedure identifiers for the low level language.

All Java primitive types (e.g. jboolean, jbyte, jint) are simply copied between
high and low level. On the flip side, objects (jobject) are passed by reference.
By default, all objects are JNI local references and only valid for the duration of
the specific JNI call. If an object needs to be retained for longer, a programmer
can opt to promote it to a global reference. Both kinds of references can (in case
of a global onemust) be freed at any time to allowgarbage collection (GC) of the

2Which is a de facto standard for the low level portions of user space.
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VM to proceed. A crucial design aspect of JNI is that direct C-structure like ac-
cess to jobjects is generally not possible and developers need to use accessor
functions. Only a small subset of APIs do support directmemory access (primi-
tive arrays and strings depending on circumstances, new IO (NIO) related entry
points), thesewill be addressed briefly later on. Exceptions can be in raised na-
tive code. In case of an exception during a JNI call into the high level language,
the low level code may handle and clear these. Any outstanding exceptions are
propagated back to the code that initiated the JNI call.

Strategies for Handling of Objects

Objects, regardless if they are simple struct-like aggregations of fields, arrays
of data elements, or any arbitrary abstract data type, require some considera-
tion for usage as part of JNI. This is mainly due to the inherent differences in
memory management between managed JVM languages and unmanaged na-
tive languages. Based on experience and reflections on this topic the author is
aware of the following four strategies to handle objects in JNI:

1. Any object that passes through low level code, but is only processed in high
level code, can simply be passed as opaque jobject value in the low level
code.

2. Conversely, any data structure that passes through high level code, but is
only processed in low level code, can be represented by a pointer value and
thus copied as primitive (commonly jlong or jint, depending on platform)
in the high level code.

3. Whenever it is acceptable that an object traverses the FFI-boundary with
a copy semantic (i.e. field changes in one domain do not reflect into the
other), the object is serialized into a data type that can natively cross the
JNIboundary anddeserializedon theother sideback into a richobject again.
One such design is a string as data type3 and JSON as format with highly ef-
ficient (de)serialization.

4. In case the exact object needs to be preserved across FFI domains, one has
to settle on a storage location for said object. Effectively this results in three
sub-strategies:

a) If the object resides in themanaged JVM language, all low level codewill
need to call high level accessor functions from low level code via JNI. E.g.
by iterating fields of a class and calling the appropriate Get<Type>Field
JNI function.

b) Conversely, any object residing in the low level language is represented
by an opaque pointer value and one needs to call custom low level ac-
cessor functions to access fields or perform operations on it.

c) Java new IO (NIO) API can allocate direct buffers and JNI can, optionally,
provide access to these for low level code. This provides arbitrary ran-
dom read/write access to both domains and as such is the most generic
approach to object/data structure management across FFI boundaries.
However, it requires a mutual understanding of data layout.

3JNI offers APIs for efficient access to the low level representation of these.
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DevelopmentWorkflow for Standard JNI

The standard development workflow of JNI with Java and C/C++ roughly in-
volves three steps [96]. Developers

1. write Java code,where the JNImethods are designatedwith the native key-
word,

2. generate native header files by executing the javac compiler with the -h
flag [95]4 and

3. compile the C/C++ code, including the implemented functionality corre-
sponding to the generated headers, into a shared library.

From now on, the JVM portion of the application has a dependency on the
native shared library, meaning the latter needs to be available to users ex-
ecuting the application. During runtime, the Java code needs to call Sys-
tem.loadLibrary("my_library"), which loads the appropriate shared library for the
platform, and subsequently calls to the implemented native methods are pos-
sible. In summary, this standard JNI workflow entails a developer-defined in-
terface in the high level JVM language and a tool-generated interface (in case
of C/C++: preprocessor header files) for the low level language.

JNI in Rust Through flapigen

The official documentation, both for the NDK [55] and JNI [96], only mention
support for C and C++ as low level languages. However, in practice many low
level languages provide JNI interoperability due to the popularity of the JVM
ecosystem.

Rust itself provides an FFI interface to other unmanaged languages based on
several application binary interfaces (ABI)5, most prominently C, as a first-
class citizen of the language.

Thus we find, that neither Java nor Rust provide first-class support for an FFI
between each other. Regardless, there are several Rust community projects,
called “crates” in Rust terminology, that aim to enable JNI between these lan-
guages as follows:

1. They provide type information for native JNI data structures andmethods,
with varying degrees of abstraction across different crates.

2. Developers write Rust code that uses the aforementioned and implement
required functionality of the specific interface.

3. Said Rust code is then compiled as a shared library with a C ABI (specify
crate_type = ["cdylib"] in Cargo.toml).

At runtime, the JVM can load and use this shared library, which behaves in-
distinguishable from a C/C++ based implementation of the low level language
portion. Prominent examples include the crates jni6, jni-sys7 and, specifi-
cally for the Android NDK, ndk8.

4This feature was formerly available as standalone javah command.
5See https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-
call-external-code for a basic introduction and https://doc.rust-lang.org/nomicon/ffi.html
for a detailed documentation on all supported ABIs and an example.

6https://crates.io/crates/jni
7https://crates.io/crates/jni-sys
8https://crates.io/crates/ndk

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/nomicon/ffi.html
https://crates.io/crates/jni
https://crates.io/crates/jni-sys
https://crates.io/crates/ndk
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java_glue.rsjava_glue.rs.in
flapigenidentity-api.rsidentity-api.rsidentity_api.rs
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Figure 5.2: The combined architecture of the embedded PIA and the Android
Digidowmanager app with focus on parts relevant for the language
interoperability via the Rust crate flapigen. Regular arrows repre-
sent dependencies. Green boxes indicate generated codewith infor-
mation flowing in the direction indicated by the dashed arrows.

We settled on using the crate flapigen9, which is an abstraction layer over the
cratejni-sys. Using the cratesjni-sysorjnidirectlyhas somenotable down-
sides:

There is no automated way to generate the interface for one side of JNI via
the developer-specified interface from the other side. This makes the con-
nection between JVM language and Rust very brittle and requires manually
syncing the interface specification between both sides.

JNI code, especially one involving complex objects and data structures
(cf. section 5.2.1), requires some boilerplate code on both sides of the FFI
boundary.

flapigen provides a so called foreign language API and improves on these is-
sues noticeably. A developer specifies an FFI interface for their application via
the flapigen foreign language API. Subsequently, the developer-specified FFI
interface in Rust is used to automatically generate both

the lower portion of JNI code in Rust (based on the crate jni-sys) and
the higher portion of JNI code in Java.

This architecture, involving both the embedded PIA and the Android Digidow
manager app is visualized in Figure 5.2.

E.g. consider the functionality around identities that is visualized as an exam-
ple in the aforementioned figure. The trait IdentityApi and its implementation
reside in the identity_api.rs Rust source file in the core subproject. Build-
ing upon this, the embedded subproject contains a single java_glue.rs.infile
with all developer-written rules in the flapigen foreign language API. This in-
cludes:

9https://crates.io/crates/flapigen

https://crates.io/crates/flapigen
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foreign_class!(/* class specification */)macro rules that define a certain set
of Rust functions, commonly taken from a trait, to be exposed as a gener-
ated Java class. In case of our running example, this involves the methods
of the trait IdentityApi shown in Listing 5.1.
foreign_typemap!(/* mapping code */) macro rules that define how types that
already exist on both sides should be translated to each other. E.g. An ob-
ject of Java type Optional<String> needs to be translated to a String/jstring
that can cross the FFI boundary and then converted back into a Rust type
Option<String>, as seen in Listing 5.2.

As previously mentioned, this FFI interface is used to generate the actual JNI
code for Rust (in java_glue.rs) and Java (specifically in IdentityApi.java for
the running example). Thus the Digidow manager app can access the identity
related functionality of the PIA.

5.2.2 Implementation of Secret Storage

In chapter 4 we performed an extensive analysis on different approaches for
secret storage. Subsequentlywedocument the implementationof our currently
selected approach and propose a concept for a more sophisticated future im-
plementation.

Simple File-Based Storage

As the conclusion lays out (cf. section 7.1), we implement file-based storage
in the app-private data directory as a fallback solution since more sophisti-
cated approaches are currently not possible due to technical or organizational
issues. The existing standalonePIApersists data in a semi-structured JSONfile.
Thismeans that our current solution can reuse existingwork and requires only
minor extensions. Whereas the standalone PIA relies on the current working
directory to be a good location for storing the PIA state, we cannot make this
assumption for the embedded PIA. Instead we devised the following approach
to handle the file storage on Android:

1. The Digidow manager app determines the location of the app-private file
storage directory.

2. It passes this information to the embedded PIA via a context initialization
method.

3. The embedded PIA stores the persisted PIA state under this directory.

The implementation of this design works as expected and allows keeping PIA
persistence handling part of the core subject shared across variants.

1 foreign_class!(class IdentityApi {
2 self_type dyn IdentityApi;
3 constructor get_identity_api_trait() -> Box<Box<dyn IdentityApi>>;
4
5 fn IdentityApi::enrollment(&self, enroll: Enroll) -> Result<(), std::io::Error>;
6 fn IdentityApi::get_identities(&self) -> Vec<Identity>;
7 fn IdentityApi::get_identity(&self, id: String) -> Result<Identity, std::io::Error>;
8 fn IdentityApi::update_identity(&self, id: String, value: Identity) -> Result<Identity, std::io::Error>;
9 fn IdentityApi::delete_identity(&self, id: String) -> Result<Identity, std::io::Error>;

10 });

Listing 5.1: flapigen foreign language API rule that exposes the Rust trait Iden-
tityApiwith all its methods as a Java class.
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1 fn jstring_to_option_string(env: *mut JNIEnv, js: jstring) -> Option<String> {
2 let chars = if !js.is_null() {
3 unsafe { (**env).GetStringUTFChars.unwrap()(env, js, ::std::ptr::null_mut()) }
4 } else {
5 ::std::ptr::null_mut()
6 };
7
8 if !chars.is_null() {
9 let s = unsafe { ::std::ffi::CStr::from_ptr(chars) };

10 let r_str = s.to_str().unwrap();
11
12 match r_str {
13 s if r_str.starts_with("Some:") => Some(s[5..].to_string()),
14 "None" => None,
15 _ => panic!("unrecognized Option<String> value!"),
16 }
17 } else {
18 None
19 }
20 }
21
22 foreign_typemap!(
23 ($p:r_type) Option<String> <= jstring {
24 let r_option_string = jstring_to_option_string(env, $p);
25 $out = r_option_string;
26 };
27 ($p:f_type, option = "NoNullAnnotations") <= "java.util.Optional<String>"
28 r#"/*Option<String> <= jstring <= @NonNull java.util.Optional<String>*/
29 $out = $p.map(s -> ("Some:" + s)).orElse("None");
30 "#;
31 ($p:f_type, option = "NullAnnotations") <= "@Nullable java.util.Optional<String>"
32 r#"/*Option<String> <= jstring <= @Nullable java.util.Optional<String>*/
33 $out = $p.map(s -> ("Some:" + s)).orElse("None");
34 "#;
35 );

Listing 5.2: flapigen foreign language API rule (and a helper function) that de-
fines a mapping of the Java type Optional<String> to a Rust type Op-
tion<String>

Concept for Usage of Dedicated Android APIs

The preferred solution for secret storage on Android, once a newer Android of-
fers algorithms and keys suitable for ZKP, is the usage of dedicated Android
APIs (e.g. Keystore systemor the Identity Credentials API). This is not compat-
ible with the current approach of a unified persistence handling in the PIA core
subproject written in Rust. To overcome this issue, we envision the following
architecture for a future implementation:

1. The PIA core subproject defines an interface for persisting identities and
other sensitive data.

2. Each variant must provide an implementation for the persistence API. The
embedded PIA (in close collaboration with the Digidow manager) should
provide an implementation that delegates this task to the dedicated An-
droid API. On the other hand, the standalone variant can continue using the
current file-based approach (or whatever strategy is optimal for their plat-
form).

Such a design would entail a more complicated control flow across the JNI
boundary. Whereas the currently implemented file-based storage only per-
forms calls from high level JVM languages into Rust, an implementation of the
envisioned persistence API would require calls from Rust to dedicated Android
APIs (which are implemented in JVM languages). While possible on a technical
level,multiple crossingsof the JNIboundary requires careful engineeringwork.
Beyond the usual complexities (e.g. consistent interface with a single source of
truth, handling of objects), one has to be mindful of the exception state of the
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(a) Dashboard screen (b) Navigation drawer

Figure 5.3: Dashboard and navigation drawer of the Android Digidowmanager
app.

JVM. As outlined in the previous subsection, any potential JVM exception need
to be either cleared or propagated by the low level code. The correct behavior
might vary depending on the specific exception that occurred on the JVM side.

5.3 Functionality Overview via the Current App UI

In order to convey the high level functionality of the embedded PIA we will
present the current state of the Android Digidow manager app user interface
(UI). It should be noted that the practical portion of this thesis was heavily fo-
cused on the embedded PIA and not the Android Digidow manager app. While
some technical improvements were performed, the UI remains unchanged in
the state that was available for the remote PIA. Furthermore, on the other end
of the spectrum, the core subproject of the PIA is itself a work in progress and
thus features placeholder data in some locations.

Upon launching the app, an initial dashboard is shown to the user (cf. Fig-
ure 5.3a). The current version entails a map for tracking Digidow entity inter-
actions in the physical world and a line chart showing transactions over the
course of time. As primarymeans of navigation, there is a navigation drawer in
the left side of the app (cf. Figure 5.3b).
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(a) Identity Enrollment (b) Identity Details

Figure 5.4: Identity related popups of the Android Digidow manager app. List
of identities can be seen in the background of both screenshots.

At the heart of the application is the management of the identities that are
stored in the PIA (cf. requirement R1). The user can see a list of identities and
can enroll additional ones via a popupmenu (both shown in Figure 5.4a).While
technically functional, the current implementation of identity enrollment is
geared towards quick development and does not feature all envisioned secu-
rity aspects of the interaction between PIA and issuing authority. Specifically,
the current version of the enrollment process allows any individual to cre-
ate an identity by providing a photo and a valid password. Said photo is sent
to the sensor, processed there into a into an embedding (i.e. feature vector),
and subsequently returned to the PIA. This concludes the simple provision-
ing process and enables usage of the identity in the Digidow identity system.
The current provisioning process ismerely a functional prototype for develop-
ment and does not reflect a proper process with security and privacy consider-
ations. Among thenumerous and severe issues are: There is no validationof the
binding between the individual and the provided photo, the sensor receives the
full biometric for embedding calculation, and identities are not trust-anchored
into an IA.

Individual identities can be managed via a detail popup, where attributes are
shown and the information privacy policy can be adjusted (cf. Figure 5.5b). The
latter defines how often the PIA inquires with the individual (via the Digidow
manager app UI) concerning the usage of an identity.
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(a) History List (b) History Transaction Details

Figure 5.5: History of transactions in the Android Digidowmanager app.

Furthermore, users can inspect the history of interactions between the PIA and
otherDigidowentities (cf. requirementR2). Once againweuse a list to visualize
the possibly numerous interactions (cf. Figure 5.5a). Each transaction can be
inspected via a detail popup, as shown in Figure 5.5b.



Chapter 6

Investigating Reproducibility of the
Embedded PIA

Trust in software is deeply linked to the software supply chain. Part of a good
one is reproducibility, which bridges the gap between source code and exe-
cutable artifact. We investigate the reproducibility of the embedded PIA and
present the necessary adjustments to achieve this property.

6.1 Trust and the Software Supply Chain

A trust relationship between a user and their software (here: PIA) is important
for acceptance and broader adoption of the latter. For our purposes we need to
distinguish between soft and hard trust [66].

The Digidow project is complex and aims to use state-of-the-art science to
achieve its designated goals. As such, we need to highlight that a precondi-
tion is the soft trust of an individual in their PIA and the larger Digidow sys-
temwith all its underlying pieces. I.e. one needs to trust the abstract concept of
a digital representative, that holds crucial credential data on an individual and
performs physical location tracking, in order to enable a decentralized authen-
tication system. This is inherently a complex question that involves e.g. per-
sonal knowledge and general attitude towards science. For these reasons the
soft trust is out of scope for this work and simply assumed.

Relevant for this work is the hard trust relationship between an individual and
their concrete software running on their device. I.e. that portion of trust that
canbe objectivelymeasured by e.g. verifying adigital signature. Already in 1974
Karger and Schell [74] recognized that a compiler needs to be trustworthy. This
notion was picked up by Thompson in his now infamous work “Reflections on
Trusting Trust” [128], which observes that once a binary has been equipped
with a back door, itmatters little that all source code looks benign. This is espe-
cially troublesome if a malicious compiler is used to produce another compiler

Figure 6.1: A simple model of a software supply chain with the following steps
(from left to right) and transitions: Source code (1) is compiled into
an executable artifact (2), which is packaged into one or several dis-
tribution formats (3) and finally delivered to the end user running
the software (4).

61
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and thus propagates the back door. Furthermore, he notes that this problem is
not limited to a compiler. All “program-handling” programs (e.g. assembler,
loader or even hardware microcode) can have a back door. This has led to the
modern term software supply chain, which refers to the collection of all com-
ponents and processes involved in the creation of an executable artifact run by
an end user [80, 91]. The better the accountability of the software supply chain
is, the higher the trust of end user. A simple model of a software supply chain
is depicted in Figure 6.1. Strong trust assertions about any step in the software
supply chain depend on all previous steps and underlying components.

6.2 Reproducibility Challenges and Solutions

One key area of a software supply chain is the step from source code to exe-
cutable artifact, which involves build tooling like previously mentioned com-
pilers. This specific step is addressed by reproducible builds, which entail that
identical source needs to result in identical executable artifacts. The build pro-
cess is only one ofmany steps in a software supply chain. Therefore, trust in the
previous steps (e.g. source code fetching, dependency auditing) andunderlying
components (e.g. runningOS, hardware and theirmicrocode) is a precondition.
Only then it becomespossible to translate reproducibility to strong trust claims
on the executable artifacts.

In contrast to the previously listed component, the build process (e.g. com-
piler, linker, packaging tools) is not assumed to be trusted. If reproducibility
of a given software with a given build system does exist, it proves trustwor-
thiness for the specific software being compiled. While this does increase the
confidence in the build system in question, it is no formal proof that the spe-
cific build system behaves correctly, especially in a non-malicious way, for all
possible input source code or configurations.

6.2.1 Deterministic Build System and Normalization

A general requirement for build reproducibility is a deterministic build system,
whichmeans that stable inputs for source code and configuration result in sta-
ble outputs for the executable artifacts [8, 13, 106]. Even if the deterministic
property of the build system holds for a given source code and configuration,
problems can arise from build context. Most build systems treat some of the
latter as input as well and thus propagate any variations of these as varying
outputs into the executable artifact. Common examples for such build context
are

various timestamps (e.g. compilation or file system timestamps),

system properties (e.g. hostname, kernel version, specific hardware) and
user information (e.g. username, locale),

paths (e.g. absolute path to source or build output, additional paths for
loader library lookup).

Ideally, output formats should not include any of these and source code should
never query the build tooling for them. However, some file formats mandate
the presence of certain build context properties.

The goal of a good deterministic build system is to normalize build context as
much as possible. Depending on the necessity of a build context property, the
build system should adopt either of the following normalization strategies:
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Omission/Removal: Provided a property is not essential for the function-
ality, it should be omitted or removed entirely from an artifact. The inclu-
sion of many values is for convenience only (e.g. debugging purposes) and
therefore, they belong in this category.

Deterministic deduction: Otherwise, the build system should infer a deter-
ministic value. E.g. if a package format mandates a build time stamp, one
can take the timestamp of the latest commit and thus receives a stable, but
still useful, value for unchanged source code.

Orthogonal to this is the time of normalization:

At emission: If the tool that captures and injects the property in question
can itself be configured ormodified, one can apply the normalization ahead
of property emission. This is preferable since it ensures that intermediary
artifacts are not tainted via the build context property in question.

Buildwrapping: If the former approach is not possible, one can apply a pre-
or post-process step that performs the normalization for individual build
steps or the overall build artifact. Such a strategy is useful to wrap existing
build tooling and thereby reduce or eliminate the leaked build context from
the final build time artifact. E.g. the Nix package manager has a bundled
shell script called set-source-date-epoch-to-latest.sh1 which can eas-
ily be included in custom Nix build scripts. It sets the SOURCE_DATE_EPOCH
environment variable to the most recent file modification timestamp in
a pre-build hook and thereby instructs invoked build tools or entire sys-
tems to use the normalized value. On the other end of the spectrum,
the strip-nondeterminism program2 from the Reproducible Builds project
strips several build context parameters from build artifacts.

Semantic equivalence: Finally, a more theoretical approach is a semantic
equivalence check that normalizes known leaked build context at runtime
of the comparison [121]. This is closely related to accountable builds [106],
which refers to builds that only differ by explainable differences. If these
explainable differences can be normalized in an automated programmatic
fashion, such a normalization can act as basis for a semantic equivalence
check. Such a late time of normalization is the only possible approach to
handle build parameters that do need to be different for the final build time
executable artifact (e.g. digital signatures).

6.2.2 Verification of Reproducibility

A straight forward methodology for verification of reproducibility is based on
performing multiple builds with a specific stable input. Ideally, independent
builds are performed on different machines and hardware by different parties.
This concept is visualized in Figure 6.2.

If the resulting outputs are stable across all builds, it follows that the specific
build is reproducible. Part of the build input is (next to the actual source code)
a configuration of the desired output (e.g. enable/disable build time features,
target ISA/ABI). Therefore, it is also desirable to test different configurations
for reproducibility to gain confidence that reproducibility holds for a certain
source state3.
1https://nixos.org/manual/nixpkgs/stable/#set-source-date-epoch-to-latest.sh
2https://salsa.debian.org/reproducible-builds/strip-nondeterminism
3However, as with any testing approach (in contrast to formal verification), this is only about
increased confidence. Certainty about the reproducibility for all configurations is only possible
by checking all configurations.

https://nixos.org/manual/nixpkgs/stable/#set-source-date-epoch-to-latest.sh
https://salsa.debian.org/reproducible-builds/strip-nondeterminism
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...

= =
Figure 6.2: Multiple independent builds are performed and subsequently com-

pared for equality.

6.3 Evaluation of Embedded PIA

As a preamble to the actual reproducibility evaluation we briefly explain the
current build process of the embedded PIA and how it relates to the CI used by
the Digidow project. The embedded PIA is part of a Rust codebase with subpro-
jects (cf. section 5.2) and thus all subprojects use the cargo build tooling – the
native build system for Rust. In addition to this, other Digidow work streams
that are concerned with the standalone PIA have added a Nix build configu-
ration for that subproject specifically. The Nix build configuration wraps the
cargo build configuration and is used in the CI to perform precisely defined CI
builds. Furthermore, this existing work uses Nix to perform a rebuild and thus
check for reproducibility.

In order to enable measurement of reproducibility (and to maintain consis-
tency with the larger project) we have decided to adopt a Nix build configu-
ration for the embedded PIA as well. Such a configuration entails pinning of
all dependencies and precise instructions of their assembly. It’s worth noting
that there are currently four prominent target tuples related to Android4 and
we build the embedded PIA for all of them.

Initial testing of the embedded PIA has shown non-reproducibility. Analysis of
the binary artifact via the diffoscope tool5 from the Reproducible Builds project
indicates a reordering of global variable symbols. As a consequence, code ac-
cessing these symbols also exhibit differences. This difference can be traced
back to the generated java_glue.rs file having variable definition order dif-
ferences on the source level between compilations (cf. Listing 6.1). Conceptu-
ally, java_glue.rs is generated by flapigen (cf. section 5.2.1) via a Rust build
script6, a general purpose pre-build hook which is used in this context for
code generation. Subsequently, we located the code responsible for the gen-
eration of these variable definitions inside flapigen. The issue was the usage of
a std::collections::HashMap instance with a naïve invocation of the values
method,whichperAPIdocprovides“An iterator visitingall values inarbitrary or-
der” [109].We swapped thedata structure for adifferentmap typewithwell de-
fined iteration order and provided a pull request to the upstream project [105].

4Specifically these are armv7-linux-androideabi, aarch64-linux-android,
i686-linux-android and x86_64-linux-android. The last two are useful for emulation.

5https://diffoscope.org/
6https://doc.rust-lang.org/cargo/reference/build-scripts.html

https://diffoscope.org/
https://doc.rust-lang.org/cargo/reference/build-scripts.html
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From a theoretical point of view, flapigen build scripts were making the build
process non-deterministic. Fortunately, once the root cause was understood,
this was a simple fix (in contrast to complex issues around build context prop-
erties that aremandated by various file formats or use cases). After adoption of
this fix, our builds of the embedded PIA are now fully reproducible for all tested
targets, including the four Android target tuples.
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1 @@ -1526,13 +1526,29 @@
2 let this: Box<Box<dyn TransactionApi>> = unsafe { Box::from_raw(this) };
3 drop(this);
4 }
5 -static mut JAVA_UTIL_OPTIONAL_LONG: jclass = ::std::ptr::null_mut();
6 -static mut JAVA_UTIL_OPTIONAL_LONG_OF: jmethodID = ::std::ptr::null_mut();
7 -static mut JAVA_UTIL_OPTIONAL_LONG_EMPTY: jmethodID = ::std::ptr::null_mut();
8 +static mut JAVA_LANG_DOUBLE: jclass = ::std::ptr::null_mut();
9 +static mut JAVA_LANG_DOUBLE_DOUBLE_VALUE_METHOD: jmethodID = ::std::ptr::null_mut();

10 +static mut JAVA_LANG_FLOAT: jclass = ::std::ptr::null_mut();
11 +static mut JAVA_LANG_FLOAT_FLOAT_VALUE: jmethodID = ::std::ptr::null_mut();
12 +static mut JAVA_LANG_STRING: jclass = ::std::ptr::null_mut();
13 +static mut FOREIGN_CLASS_TRANSACTIONAPI: jclass = ::std::ptr::null_mut();
14 +static mut FOREIGN_CLASS_TRANSACTIONAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
15 +static mut JAVA_UTIL_OPTIONAL_INT: jclass = ::std::ptr::null_mut();
16 +static mut JAVA_UTIL_OPTIONAL_INT_OF: jmethodID = ::std::ptr::null_mut();
17 +static mut JAVA_UTIL_OPTIONAL_INT_EMPTY: jmethodID = ::std::ptr::null_mut();
18 static mut JAVA_LANG_INTEGER: jclass = ::std::ptr::null_mut();
19 static mut JAVA_LANG_INTEGER_INT_VALUE: jmethodID = ::std::ptr::null_mut();
20 static mut JAVA_LANG_BYTE: jclass = ::std::ptr::null_mut();
21 static mut JAVA_LANG_BYTE_BYTE_VALUE: jmethodID = ::std::ptr::null_mut();
22 +static mut FOREIGN_CLASS_CONFIGAPI: jclass = ::std::ptr::null_mut();
23 +static mut FOREIGN_CLASS_CONFIGAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
24 +static mut JAVA_UTIL_OPTIONAL_LONG: jclass = ::std::ptr::null_mut();
25 +static mut JAVA_UTIL_OPTIONAL_LONG_OF: jmethodID = ::std::ptr::null_mut();
26 +static mut JAVA_UTIL_OPTIONAL_LONG_EMPTY: jmethodID = ::std::ptr::null_mut();
27 +static mut JAVA_LANG_SHORT: jclass = ::std::ptr::null_mut();
28 +static mut JAVA_LANG_SHORT_SHORT_VALUE: jmethodID = ::std::ptr::null_mut();
29 +static mut FOREIGN_CLASS_SENSORAPI: jclass = ::std::ptr::null_mut();
30 +static mut FOREIGN_CLASS_SENSORAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
31 static mut FOREIGN_CLASS_IDENTITYAPI: jclass = ::std::ptr::null_mut();
32 static mut FOREIGN_CLASS_IDENTITYAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
33 static mut JAVA_UTIL_OPTIONAL_DOUBLE: jclass = ::std::ptr::null_mut();
34 @@ -1540,23 +1556,7 @@
35 static mut JAVA_UTIL_OPTIONAL_DOUBLE_EMPTY: jmethodID = ::std::ptr::null_mut();
36 static mut JAVA_LANG_LONG: jclass = ::std::ptr::null_mut();
37 static mut JAVA_LANG_LONG_LONG_VALUE: jmethodID = ::std::ptr::null_mut();
38 -static mut JAVA_LANG_FLOAT: jclass = ::std::ptr::null_mut();
39 -static mut JAVA_LANG_FLOAT_FLOAT_VALUE: jmethodID = ::std::ptr::null_mut();
40 static mut JAVA_LANG_EXCEPTION: jclass = ::std::ptr::null_mut();
41 -static mut JAVA_UTIL_OPTIONAL_INT: jclass = ::std::ptr::null_mut();
42 -static mut JAVA_UTIL_OPTIONAL_INT_OF: jmethodID = ::std::ptr::null_mut();
43 -static mut JAVA_UTIL_OPTIONAL_INT_EMPTY: jmethodID = ::std::ptr::null_mut();
44 -static mut JAVA_LANG_SHORT: jclass = ::std::ptr::null_mut();
45 -static mut JAVA_LANG_SHORT_SHORT_VALUE: jmethodID = ::std::ptr::null_mut();
46 -static mut FOREIGN_CLASS_CONFIGAPI: jclass = ::std::ptr::null_mut();
47 -static mut FOREIGN_CLASS_CONFIGAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
48 -static mut JAVA_LANG_DOUBLE: jclass = ::std::ptr::null_mut();
49 -static mut JAVA_LANG_DOUBLE_DOUBLE_VALUE_METHOD: jmethodID = ::std::ptr::null_mut();
50 -static mut FOREIGN_CLASS_TRANSACTIONAPI: jclass = ::std::ptr::null_mut();
51 -static mut FOREIGN_CLASS_TRANSACTIONAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
52 -static mut FOREIGN_CLASS_SENSORAPI: jclass = ::std::ptr::null_mut();
53 -static mut FOREIGN_CLASS_SENSORAPI_MNATIVEOBJ_FIELD: jfieldID = ::std::ptr::null_mut();
54 -static mut JAVA_LANG_STRING: jclass = ::std::ptr::null_mut();
55 #[no_mangle]
56 pub extern "system" fn JNI_OnLoad(
57 java_vm: *mut JavaVM,

Listing 6.1: Different orderings for Rust static variables (comparable to global
variables in C) in the generated java_glue.rs code that subse-
quently resulted in a non-reproducible binary artifact. Generated
JNI code for registering and freeing the global JNI references in
the JNI_OnLoad and JNI_OnUnload also have these ordering differ-
ences, but are omitted for brevity here.



Chapter 7

Conclusion and Outlook

Wesummarize thefindings of thismaster thesis,which entail several focus ar-
eas. On the theoretical side we defined a threat model, derived resulting tech-
nical measures and analyzed approaches for secret storage on Android. On the
practical side we performed the implementation of the embedded PIA (and its
integration into the Android Digidowmanager) and evaluated, as well as sub-
sequently fixed, the reproducibility of this PIA variant. Concrete plans for fu-
ture work streams of the Digidow project are presented right after the respec-
tive focus area summary. Finally, we conclude by proposing more general and
abstract future work.

7.1 Summary of Contributions

We’ve iterated on previous threat modeling from other project work streams
andoutlined both requirements and the threatmodel for the PIA. Based on this,
privacy and security related technical measures were derived. These are used
to guide the software architecture and the choice of algorithms/technologies
employed by our reference PIA implementation.

A brief summary of all the analyzed approaches for secret storage on Android
is as follows:

White-box cryptography (WBC) does not provide sufficient security guar-
antees and can thus be discarded right away.

Theusageof theKeystore systemor the IdentityCredentialsAPI is currently
not feasible for technical reasons. Specifically, the pairing friendly curves
and group signatures required for ZKPs are not supported.

Direct SE access does fulfill the technical requirements, but is not realistic
on a large scale for the Digidow research project.

The fallback solution, namely storage of all credential data inside app-
private data, does have the highest flexibility (arbitrary algorithms possi-
ble) but lacks any kind of security against attackers with system level priv-
ileges.

Overall, no single API or implementation strategy provides an ideal solution
for the Android PIA. We intend to initially use the data and file storage API and
implement/use a software implementation of group signatures and ZKPs. Ac-
tual implementation of this ZKP software approach is an actionable item for
the immediate futureof theDigidowproject. Ideally, theAPIsdedicated to stor-
ageofkeymaterial (Keystore system)and/or identity (IdentityCredentialsAPI)
should evolve to support the technical primitives required for ZKPs. In such a
case, we would switch to these dedicated, platform sanctioned solutions. For
now, we believe the most promising avenue for hardware supported security
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is an agreement between the Digidow research project and a single SE vendor.
This would allow us to demonstrate the feasibility of our vision in a proof of
concept, even if limited to a single/few device(s).

Due to auxiliary requirements from the larger Digidow project, we have inves-
tigated the usage of the memory safe systems programming language Rust on
Android. This focus area involves the general theoretical aspect of language in-
teroperability, especially the foreign-function interface (FFI) solution. Based
on an overview of the FFI capabilities of the languages involved, namely the
Java Native Interface provided by the JVM running on Android and Rust’s ca-
pability to compile a dynamic library, we have decided on and implemented a
solution. The flapigen Rust library provides an abstraction layer above raw JNI
bindings, allows declaring a single source of truth for the FFI interface in Rust
and provides code generation for the convenience of the developer. Addition-
ally, we have added compatibility between the existing Android Digidowman-
ager and the embedded PIA. This has resulted in a unified core code base that
implements the functionality of both PIA variants in the state-of-the art sys-
tems programming language Rust.

The importance of trust and the software supply chain is undisputed. Part of
this larger topic are reproducible builds and deterministic build systems used
to bridge the trust gap between source code and executable artifacts. Based on
previous work by the author, we present our thoughts on build context nor-
malization strategies and time of normalization. As a practical contribution,
we evaluated the reproducibility of the embedded PIA. Our analysis uncovered
a non-determinism in the flapigen Rust library. Through a subsequent fix we
managed to make the embedded PIA reproducible and thereby increase the
trust in our software supply chain. Our pull request with this fix was merged
in the upstreamflapigen project and thus benefits the wider open source com-
munity.

7.2 FutureWork

Based on the current state of literature ondigital identity and our contributions
in this work, we see numerous future areas of interest. While they are inspired
by the Digidow project, we believe that most of these topics are interesting to
the scientific community at large.

Portability of digital identities, e.g. for backups or migration from one PIA to
another, is a complex subject. If an identity has plain text key material avail-
able, the import into a security API (e.g. Android Keystore system) or hardware
(e.g. secure element) is trivial. However, the inverse, the export of keymaterial
for an identity froman existingPIA is inherently at oddswith the security prin-
ciple of key sealing. How to facilitate legitimate portability demands by users,
while limiting (or even prohibiting) possible damage frommalicious attackers,
is an open question for future research.

Another topic is the association between an individual and their PIA(s). The
introduction of the PIA term in section 1.1.1 conceptually assumes that each
individual has exactly one PIA. Furthermore, the project vision currently en-
tails twodistinct PIA implementation variants (remote and embedded; see Fig-
ure 5.1). Both are augmented by aDigidowmanager application, running on the
mobile phone of the individual, that enable user interactions. This leads to an
obvious question: Can/Should one individual have multiple PIAs? For a mean-
ingful answer, one needs to consider the motivations behind possible usage of
multiple PIAs for a single individual.
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One straight forward reason is redundancy and reliability. This approach en-
tailsmultiple runningPIA instances that are kept in sync, together constituting
a single logical PIA and representing a single individual. We consider a com-
bination of a remote and an embedded PIA to be especially useful. E.g. con-
sider that limited internet connectivity of the mobile phone (e.g. due to travel
abroad) makes the remote PIA instance the only reachable one. Beyond this
configuration, the combination of multiple remote PIA instances may also be
beneficial. E.g. provided theyarehostedat different locations, suchanarrange-
ment promises to improve availability (cf. threat TP2), maintaining function-
ality of the logical PIA even in face of an on-path attacker that can fully choke
traffic to one (but not the other) physical PIA instance.

Another obvious reason is the partitioning of identities related to different ac-
tivities and roles in life (e.g. business, private, specific community). Here, a
single device would runmultiple PIA instances, each equipped with a subset of
identities. E.g. per default a PIA instancewith business related identities is only
active duringworkhours.However,while this seems reasonable on the surface,
we believe the same functionality can be achieved with a single PIA. For each
identity a PIA implementation should at least offer toggleable enablement and
can also provide time and/or location-based policy rules that automate such
a switch. Unlinkability measures, like M4, M5 and M6, should ensure that the
single PIA approach is indistinguishable from themultiple PIA one for involved
parties.

Overall, the usage ofmultiple PIAs per individual is reasonable. Albeit, depend-
ing on the motivation, it may not be advantageous over a single PIA instance.
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