
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Martin Schwingenschuh
k11803151

Submission
Institute of
Networks and Security

Thesis Supervisor
Dr.Michael Roland

March 2022

Android Device Security
Database: Network
monitoring

Bachelor’s Thesis
to confer the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

https://jku.at/

Abstract

Smartphones generate an abundance of network traffic while active and dur-
ing software updates. With such a high amount of data it is hard for humans
to comprehend the processes behind the traffic and find points of interest that
could compromise the device security. To solve this problem, this thesis pro-
poses a system to automatically monitor the traffic of Android clients, store it
in a database andperformafirst analysis of the network data. For the capturing
andmonitoring tasks, we decided to use the full packet capture system Arkime
and expand its functionality with a custom tool built in the course of this the-
sis. To be able to gain relevant insights, the systemmonitors the traffic over a
long time frame, which prevents false data caused by holes in the data stream
or one time events. All Android devices are separated from each other by as-
signing each device to a separate VLAN. For each session the system produces
custom tags, low level statistical data and high level classification data. Fur-
ther, the system provides a solution to apply custom rules in which data from
sessions can be freely accessed andmodified. Additionally, tags can be set with
amatching of host names against custom regular expressions or update infor-
mation stored in the database. The system uses only the captured data so that
changes that canoccur later on like theDNS resolutiondon’t affect the accuracy
of the outcome.

ii

Kurzfassung

Smartphones erzeugen eine sehr große Menge an Netzwerk-Traffic während
Software-Updates und während sie aktiv sind. Mit so einer Menge an Daten
sind die Prozesse hinter dem Netzwerktraffic für Menschen nur schwer nach-
zuvollziehen, so dass die Gerätesicherheit gefährdende Features nur schwer zu
erkennen sind. Zur Lösung dieses Problems wird ein System benötigt, welches
den Datenverkehr von Android-Clients automatisch überwachen, in einer Da-
tenbank speichern und eine erste Analyse durchführen kann. Für das Captu-
ring und Monitoring bauen wir auf das Full-Packet-Capture-System Arkime
auf und erweitern dessen Funktionalität im Zuge dieser Arbeit mit einem ei-
gens entwickeltenTool. Umrelevante Erkenntnisse gewinnen zu könnenüber-
wacht das System denDatenverkehr über einen langen Zeitraumwodurch ver-
hindert wird, dass fehlerhafte Features – die durch Lücken imDatenverkehrs-
strom oder einmalige Ereignisse verursacht werden – produziert werden. Je-
dem Smartphone wird ein eigenes VLAN zugewiesen und damit von anderen
Geräten isoliert.DasSystemgeneriert für jedeSessionbenutzerdefinierteTags,
Low-Level- und High-Level-Statistiken. Weiters stellt das System eine Funk-
tion bereitmit der benutzerdefinierte Regeln erstellt werden können. In diesen
RegelnkönnendieDatender Sessiongelesenundbearbeitetwerden. Zusätzlich
können Tags mithifle eines Abgleiches der Hostnamen, erstellter Regular Ex-
pressionsundgespeicherteUpdatedatengeneriertwerden. ZurAnalysewerden
nur die vorhanden Netzwerk-Daten verarbeitet um dynamische Abhängigkei-
tenwie z.B. die DNS-Auflösung zu vermeiden,welche das Ergebnis verfälschen
könnten.

iii

Acknowledgements

This work has been carried out within the scope of ONCE (FFG grant
FO999887054) in the program “IKT der Zukunft” and has partially been
supported by Digidow (Christian Doppler Laboratory for Private Digital Au-
thentication in thePhysicalWorld) and theLITSecure andCorrect SystemsLab.
We gratefully acknowledge financial support by the Austrian Federal Ministry
for Climate Action, Environment, Energy, Mobility, Innovation and Technol-
ogy (BMK), the Austrian Federal Ministry for Digital and Economic Affairs
(BMDW), the National Foundation for Research, Technology and Develop-
ment, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey
biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP Semicon-
ductors Austria GmbH & Co KG, Österreichische Staatsdruckerei GmbH, and
the State of Upper Austria.

iv

Contents

Abstract ii

Kurzfassung iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 System Overview . 2
1.3 Network Setup . 4

2 Arkime / ELK Setup 5
2.1 Arkime Setup . 5
2.2 Indices . 7
2.3 Custom Index “updates” . 8
2.4 Custom Index “tagpatterns” . 9

3 Analyzer 11
3.1 Program Flow . 12
3.2 JSONMapping . 14
3.3 Interaction with Elasticsearch . 15
3.4 Tagging Rules . 15
3.5 Update Tagging . 16

3.5.1 Potential Methods . 17
3.5.2 Implementation . 18

3.6 DNS Tagging . 19
3.6.1 Potential Method . 19
3.6.2 Implementation . 20

3.7 Runtime Options . 22
3.8 Compile-time Options . 24
3.9 Status Indication . 25
3.10 Dependencies . 25

4 FutureWork 26
4.1 Improvements of Core Principles . 26
4.2 Miscellaneous Improvements . 26

References 27

v

Chapter 1

Introduction

Smartphones generate network traffic with nearly every action. Even when
idling andwithout user input network traffic is generated. This network traffic
is an important part of understanding the processes running on a device. Fur-
ther the traffic is a good basis for security research since most of the security
breaches are dependent on transmitting data over the network interface. If the
network traffic is captured and monitored such breaches can be detected and
prevented in the future. For capturing the network trafficwe use the full packet
capture system Arkime1. And add with a custom tool additional functionality
to be able to perform certain rules to derive higher level information andmake
this information easily readable.

1.1 Motivation

Since the network traffic becomes so large that for a human it is basically an
unmanageable amount and thus not human-readable, a system is needed to
automaticallymonitor the network traffic and do a basic analysis on themoni-
tored data and transform it into something humans canworkwith. That can be
done by representing the data on a higher level like sessions instead of single
packets and additional information like added custom tags. Those tags should
be meaningful for humans and contain derived information like the company
associated with the IP address, and information on the encryption. Further
we want to use the tags in search queries to increase the level of information
gained. With the data flow shown in Figure 1.1 the user always has the auto-
matically processed data available which is enriched with derived information
in a human-readable format.

1. The raw network traffic is captured by Arkime.

2. Arkime processes the data, performs a statistical analysis and stores it on a
session basis in a database.

3. The Analyzer automatically performs a detailed analysis on the stored data.

4. The user has the analyzed data available and canmanually perform further
actions.

1https://arkime.com

1

https://arkime.com

1 Introduction 2

Figure 1.1: Logical data flow

1.2 SystemOverview

The systemuses an OpenWRT2 Access Point aswireless LAN connection for the
smartphone devices seen in Figure 1.2. This access point is configured in away,
that all devices are separated from each other but still have full access to the
internet. This is achieved by assigning each device to a different VLAN. The ac-
cess point then mirrors each VLAN traffic via a L2TP-tunnel into a server for
monitoring and analysis.

We decided to use the full packet capture systemArkime for capturing the net-
work traffic and performing low level analysis and simplification. Arkime uses
Elasticsearch (from the ELK stack3) as database solution and consists of a cap-
ture service and a viewer service. Where the capture service fetches the traffic
from a network interface, groups packets into sessions and analyzes each ses-
sion for low level features. When the sessions are complete, the session data is
stored in the database as a JSON object and the raw packets are stored in pcap
files. The viewer service only presents the data that is stored in the database
and pcap files via a web interface. For more information on the Elasticsearch
database see section 2.2.

Figure 1.2: Overview of the system

2https://openwrt.org/
3https://www.elastic.co/what-is/elk-stack

https://openwrt.org/
https://www.elastic.co/what-is/elk-stack

1 Introduction 3

Arkime provides a list of plugins that add additional analysis capability to the
system. Butwe foundwhile testing that those plugins either don’t have enough
flexibility or are not stable enough for us to rely on. Because of thatwedesigned
a custom service called Analyzer. This Analyzer uses only the data stored in the
database and pcap files to extract additional features and has no other inter-
actions except write operations on the database. This is to introduce as little
dependencies as possible to the system.

Additionally, we set upKibana from the ELK stack for simpler interactionswith
the database. Note that this is only for maintenance and completely optional.
For the Arkime viewer and the Analyzer it is only necessary for the data to be
present in thedatabase.Howthedata is provided to thedatabase isnot relevant.

TheAnalyzer uses precomputed data that is stored in the database and does not
read any files for the tagging at runtime. That is important for the execution
time and is explained in detail in section 3. At the current stage of development
there are two kinds of information fetched. The information when updates are
triggered on devices (see section 3.5) and Tagpatterns used for matching host
names with tags (see section 3.4).

Both the update tagging and the DNS tagging are implemented as separate
rules. Additionally, the Analyzer allows for custom rules that are executed for
each database entry explained in section 3.4.

The captured network traffic is stored in the Elasticsearch database and in pcap
files shown inFigure 1.3. For simplification,wemerged thedifferent session in-
dices to just one in the followingfigure, but in reality there aremanymore ses-
sion indices. The only automatic write operations are performed by the Arkime
capture service which stores the captured data in the session indices and pcap
files. The indices “tagpatterns” and “updates” have to be filled manually and
are only read by the Analyzer. The Analyzer acts as a mutator for the session
indices. At the current state of the development, data is only added and not
deleted.

Figure 1.3: Overview of the data storage

1 Introduction 4

1.3 Network Setup

The machine where the system (Arkime, Elasticsearch and Analyzer) is set up
has additional network configurations explained in the following. To get traffic
into an interface of themachine Arkime can capture, we need a tunnel from the
access point to themachine. Since this thesis is only concernedwith the virtual
machine we will document here only one side of the tunnel. This tunnel was
already set up, and we only document the set-up for the sake of completeness.

As implementation a L2TP-Ethernet-over-UDP encapsulation tunnel is used
which adds an overhead but is because of its kernel support fairly easy to set up
on the virtual machine side. For this implementation we need to add an inter-
face and a systemd service.

Listing 1.1: /etc/network/interfaces
1 iface l2tpeth0 inet manual
2 pre−up ip l2tp add tunnel tunnel_id 1
3 peer_tunnel_id 1 udp_sport 5000
4 udp_dport 5000 encap
5 udp local 140.78.100.108 remote 140.78.100.105
6 pre−up ip l2tp add session
7 tunnel_id 1 session_id 1
8 peer_session_id 1
9 mtu 1428
10 down ip l2tp del tunnel tunnel_id 1

The interface l2tpeth0 is just added to the network/interfaces config file. To
automatically start the tunnelwhen themachine boots a service is needed. This
service file is stored in /etc/systemd/system/l2tp-capture-tunnel.service and
has the following content.

Listing 1.2: Unit file for l2tp tunnel
1 [Unit]
2 Description=L2TP Capture Tunnel Interface
3 Requires=network−online.target
4 After=network−online.target
5
6 [Service]
7 Type=oneshot
8 RemainAfterExit=yes
9 #StandardOutput=tty
10 ExecStart=/usr/sbin/ifup l2tpeth0
11 ExecStop=/usr/sbin/ifdown l2tpeth0
12
13 [Install]
14 WantedBy=multi−user.target

Chapter 2

Arkime / ELK Setup

The system uses an instance of Arkime1 which is a full packet capture system
that captures and stores the incoming network traffic. The version used in this
thesis is v3.0.0-GIT.

The ELK stack refers to the Elasticsearch, Logstash and Kibana combination
from which the Elasticsearch2 and Kibana3 Modules are used. Elasticsearch is
a RESTful search and analytics engine used by Arkime as database. The version
used in this thesis is v7.9.3-oss. SinceElasticsearch is alreadyneededbyArkime
we decided to also use it as database for the Analyzer tool so that all the data is
managed in one database solution.

2.1 Arkime Setup

The following additions to the config.ini file are needed for the Analyzer to
work properly. This additional configuration creates the custom fields “Ana-
lyzerVersion”, “RuleVersion” and “FoundHosts” which are created automat-
ically by Arkime on the next start of the Arkime capture service.

Listing 2.1: Custom fields defined in config.ini
1 # Custom field definitions
2 [custom−fields]
3 AnalyzerVersion=db:AnalyzerVersion;kind:termfield;friendly:Analyzer version;count:

false;help:Version of Analyzer used on this Session
4 RuleVersion=db:RuleVersion;kind:integer;friendly:Rule version;count:false;help:

Version of Analyzer rules used on this Session
5 FoundHosts=db:FoundHosts;kind:termfield;friendly:Found Hosts;count:true;help:Hosts

found for this session

Tomake sure that theArkime-capturemodule is startedonbootof themachine
and that the IP tunnel from section 1.3 is working, a service file is needed (see
Listing 2.2). The “Requires” fields ensure that Elasticsearch and the L2TP tun-
nel are running before the capture module starts. Additionally, some configu-
rations are performed by this unit so Arkime always behaves the same between
restarts of the service.

For the Arkime-viewer a service is created to start the Arkime-viewer mod-
ule on boot (see Listing 2.3). This service is only started if the Elasticsearch
database is already running.

1https://arkime.com/
2https://www.elastic.co/elasticsearch/
3https://www.elastic.co/kibana/

5

https://arkime.com/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana/

2 Arkime / ELK Setup 6

We decided to use the standard configuration for the IP address and port Elas-
ticsearch listens to, namely localhost:9200. Because of that the curl examples
given in this document use this URL. If the address changes the URLs in the
listed curl commands need to be updated.

Listing 2.2: arkimecapture.service
1 [Unit]
2 Description=Arkime Capture
3 Wants=network.target
4 After=network.target
5 Requires=l2tp−capture−tunnel.service
6 After=l2tp−capture−tunnel.service
7 Requires=elasticsearch.service
8 After=elasticsearch.service
9
10 [Service]
11 Type=simple
12 Restart=on−failure
13 #StandardOutput=tty
14 Environment="ARKIME_INSTALL_DIR=/opt/arkime"
15 EnvironmentFile=−/opt/arkime/etc/molochcapture.env
16 ExecStartPre=−/opt/arkime/bin/moloch_config_interfaces.sh
17 ExecStart=/bin/sh −c '/opt/arkime/bin/capture −c /opt/arkime/etc/config.ini ${

OPTIONS}'
18 WorkingDirectory=/opt/arkime
19 LimitCORE=infinity
20
21 [Install]
22 WantedBy=multi−user.target

Listing 2.3: arkimeviewer.service
1 [Unit]
2 Description=Arkime Viewer
3 Wants=network.target
4 After=network.target
5 Requires=elasticsearch.service
6 After=elasticsearch.service
7
8 [Service]
9 Type=simple
10 Restart=on−failure
11 #StandardOutput=tty
12 User=root
13 EnvironmentFile=−/opt/arkime/etc/molochviewer.env
14 ExecStart=/bin/sh −c '/opt/arkime/bin/node viewer.js −c /opt/arkime/etc/config.

ini ${OPTIONS}'
15 WorkingDirectory=/opt/arkime/viewer
16
17 [Install]
18 WantedBy=multi−user.target

2 Arkime / ELK Setup 7

2.2 Indices

Arkime creates a lot of indices when Elasticsearch is initialized with the db.pl
script provided by the Arkime installation. For more details on the initializa-
tion see the documentation4. For this thesis, the relevant Arkime indices are
the ones where the sessions and the paths of the pcap files are stored. Arkime
creates a separate index with the pattern sessions2-yymmdd for each day. We saw
that in different Arkime versions different prefixes are used, which have to be
set in the Analyzer-Options explained in section 3.8. A list of all the stored in-
dices can be queried with the following command.

Listing 2.4: Curl Command - list indices
1 curl −X GET http://localhost:9200/_cat/indices

Document IDs of the session documents have the pattern yymmdd-<some hash>
where the timestamp is equivalent to the one in the index.

Themapping of sessions should be checkedwith the following commandwhen
using newer versions of Arkime, since we found that this too changes with the
version. The value index-id is to be replaced with the index in question.

Listing 2.5: Curl Command - show sessionmapping
1 curl −X GET http://localhost:9200/index−id/_mapping?pretty

If the Arkime version changes andwith it themapping of the indices, the Com-
pile options of the Analyzer also need to change; see section 3.8. It is sufficient
to check themappingof one session index sinceArkimeuses the samemapping
for all session indices. Per default, stored indices are never deleted which can
lead to a problem if Arkime is configured to use 100% of disk space or simply
a loss of data when no new indices are created to store data to. It is important
to prevent that with enough disk space or with the solution recommended by
Arkime which is to set up a cronjob to automatically delete data after a set pe-
riod. The cronjob has to call the script “db.pl” in Arkime included as explained
in the Arkime documentation [1]. Of course indices can be deleted manually
with the Kibana interface or with curl commands, but it is not recommended
unless a tool is used to ensure that only the oldest indices are deleted to pre-
vent gaps in the data. Note that deleting an index does not delete the pcap files
stored on disk. The custom indices needed for the Analyzer and any other in-
dex stored in Elasticsearch that is not inserted by Arkime are not handled by
the deletion script and need a separate solution. We decided that a deletion by
query is sufficient since the data has to be managed manually at the current
development stage.

4https://github.com/arkime/arkime/blob/v3.3.1/release/README.txt

https://github.com/arkime/arkime/blob/v3.3.1/release/README.txt

2 Arkime / ELK Setup 8

2.3 Custom Index “updates”

The information when a device starts and stops an update is stored in the Up-
date indexwith one start-update and one optional stop-update document dis-
tinguished by the “type” field. A true value of the field “type” stands for a start
and a false value for a stop marker. To distinguish different client devices we
decided to use the VLANs associated with the devices. The stored data is used
by the Analyzer as explained in section 3.5. We decided to omit any restrictions
on the document input to be flexible and reduce the overhead. That alsomeans
that when adding documents to the index, no checks if the data is reasonable
or complete are done. Those checks have to be done by the user or by a query
inserting the document.

Listing 2.6: Curl Command - create update index
1 curl −XPUT localhost:9200/updates −H 'Content−Type: application/json' −d'
2 {
3 "mappings":{
4 "properties":{
5 "vlan":{"type":"keyword","index":true},
6 "mac":{ "type":"keyword","index":true },
7 "timestamp":{ "type":"date_nanos" },
8 "type":{ "type":"boolean" },
9 "comment":{ "type":"text"}
10 }
11 }
12 }'

The mapping can be queried with the following command that shows the cus-
tom fields.

Listing 2.7: Curl Command - get mapping of updates
1 curl −XGET localhost:9200/updates/_mapping?pretty

With the following commandwe give an example how to store documents with
a curl command.We add an updatemarker u1 at a certain time for a certain de-
vice.TheVLANisakeywordfieldused formappingupdatemarkerswithdevices
and can be set to arbitrary values. The MAC address is just a string containing
theMACas text.We decided to use thefield type “keyword” so that it is indexed
byElasticsearch. The time is setwith thefield timestamp in epoch format. Since
in this case we add a start marker we set the type to true. The comment is just
an arbitrary string that is not indexed and with that not searchable.

Listing 2.8: Curl Command - inserting documents
1 curl −XPOST localhost:9200/updates/_doc −H 'Content−Type: application/json' −d'
2 {
3 "vlan":"144",
4 "mac":"52:54:00:a0:59:b7",
5 "timestamp": 1629732600000,
6 "type":"true",
7 "comment":"u1"
8 }'

2 Arkime / ELK Setup 9

Toquery all documents stored in the indexone canuse the following command.
If the number of documents exceeds the limit from Elasticsearch the scroll ar-
gument has to be added and further queried with the scroll API. For more in-
formation see section 3.3 or the Elasticsearch API documentation5.

Listing 2.9: Curl Command - get all updates
1 curl −XGET localhost:9200/updates/_search −H 'Content−Type: application/json' −d

'
2 {
3 "query":{"bool":{"must":{"match_all":{}}}}
4 }'

A single document can be queried with the following command. The document
ID used by Elasticsearch is not set when storing a document but rather gener-
ated automatically by Elasticsearch.

Listing 2.10: Curl Command - get a single update document
1 curl −XGET localhost:9200/updates/_doc/<document−id>

2.4 Custom Index “tagpatterns”

The index “tagpatterns” stores the data which regular expression connects to
which tags. One entry can have one regular expression (has to be POSIX con-
form) and one to many tags stored as strings. The identification is handled via
an ID automatically generated by Elasticsearch. This index is intended to be
written externally with curl commands or via the Kibana interface and is only
read from the Analyzer.

We decided that a simple mapping and no restrictions for the inserted doc-
uments is best for our use case to have the most flexibility. That means that
the documents are not checked for their content whatsoever. So duplicate and
missing data is possible and has to be handled when inserting documents. The
index was created with the following curl command showing the index map-
ping for the custom fields.

Listing 2.11: Curl Command - create tagpatterns index
1 curl −XPUT localhost:9200/tagpatterns −H 'Content−Type: application/json' −d'
2 {
3 "mappings":{
4 "properties":{
5 "regex":{ "type":"keyword","index":true },
6 "tags":{ "type":"keyword","index":true },
7 "comment":{ "type":"text"}
8 }
9 }
10 }'

The mapping can be queried with the following command that shows the cus-
tom fields.
5https://www.elastic.co/guide/en/elasticsearch//reference/current/scroll-api.html

https://www.elastic.co/guide/en/elasticsearch//reference/current/scroll-api.html

2 Arkime / ELK Setup 10

Listing 2.12: Curl Command - get mapping of tagpatterns
1 curl −XGET localhost:9200/tagpatterns/_mapping?pretty

To add documents to the index we used curl with the following command.
Herewe add an example tag patternwith the regular expression “google”which
matches all strings where the string “google” occurs. The Analyzer does not
add anything to the regular expression so if a full text search is preferred
then the control characters “^” and “$” are needed. For example “^.*google.*$”
would check the whole string. For a more detailed description on how to write
these expressions refer to the GNU documentation6. Here we add just one tag
into the tags array, but there is no limit on thenumber of tags stored in the doc-
ument. The comment field is a text field where arbitrary strings can be stored
but not searched in queries since this field is not indexed.

Listing 2.13: Curl Command - insert tagpattern
1 curl −XPOST localhost:9200/tagpatterns/_doc −H 'Content−Type: application/json'

−d'
2 {
3 "regex":".∗google.∗",
4 "tags":["google"],
5 "comment":"everything google"
6 }'

The following command lists all documents in the index. At some time the
number of documents will exceed the limit Elasticsearch returns. In this case
the query has to be expanded with a scroll argument and queried with the
scroll-api.

Listing 2.14: Curl Command - get all tagpatterns
1 curl −XGET localhost:9200/tagpatterns/_search −H 'Content−Type: application/json

'
2 −d'
3 {
4 "query":{"bool":{"must":{"match_all":{}}}}
5 }'

A single document can be queried with the following command. The document
ID used by Elasticsearch is not set when storing a document but rather gener-
ated automatically by Elasticsearch.

Listing 2.15: Curl Command - get a single tagpattern document
1 curl −XGET localhost:9200/tagpatterns/_doc/<document−id>

Alternatively one could also usemore sophisticatedmethods provided by Elas-
ticsearch e.g. search-api or update-by-query. We found that the sql-api does
not work with the index layout we chose. We will not explain those methods in
detail and refer to the Elasticsearch documentation7.

6https://www.gnu.org/software/findutils/manual/html_node/find_html/Regular-
Expressions.html#Regular-Expressions

7https://www.elastic.co/guide/en/elasticsearch//reference/current/rest-apis.html

https://www.gnu.org/software/findutils/manual/html_node/find_html/Regular-Expressions.html#Regular-Expressions
https://www.gnu.org/software/findutils/manual/html_node/find_html/Regular-Expressions.html#Regular-Expressions
https://www.elastic.co/guide/en/elasticsearch//reference/current/rest-apis.html

Chapter 3

Analyzer

The Analyzer is a C program written in the course of this thesis that enriches
data stored by the Arkime system with custom tags. Those tags are set by ap-
plying custom written rules. The Analyzer has the custom indices updates and
tagpatterns as dependencies which are automatically checked but not created
if absent. We decided that we develop this programwith a clean separation be-
tween functionality and data in mind. For data storage we use the already ex-
isting Elasticsearch database which has the advantage that the storage is very
efficient and there is only one logic place where data is stored and not in dif-
ferent files. That means that the Analyzer has to fetch the needed data like the
tagpatterns from Elasticsearch for each execution at runtime. Which is from a
performance point of viewbetter than computing data at runtime. The decision
of the programming language is purely by preference, any other language that
can perform bitwise operations on the raw traffic data is sufficient. If the low
level packet analysis is not needed at all one could port this program into a high
level language. Figure 3.1 shows the file structure of the source files.

Figure 3.1: Source File structure

glbs.c/h
Contains the compile options explained in section 3.8 and data manage-
ment. Additionally, this file defines some structs with some helpful func-
tionality usable in rules.

elasticsearch.c/h
Handles the read and write interactions with Elasticsearch especially the
execution of curl commands.

pcap.c/h
Contains all the functionality for the interactions with pcap files, primarily
searching for and in pcap files.

rules.h
In this file the custom rules are defined as functions.

tools.c/h
Contains some useful data structures like a string builder and a linked list.

11

3 Analyzer 12

3.1 Program Flow

The main function handles the preparations needed for a run, like parsing the
arguments and getting the update data and tag patterns, and executes all rules
defined in thefile rules.h. Sincewedecided to rely on thehost system toperiod-
ically call this program there is no need for a main loop. When called, the pro-
gram handles preparations, sets the scope and analyzes the data just once. The
steps “parse Arguments”, “check Dependencies” and “read Matchdata from
Elasticsearch” are preparation steps while analyzeSession applies the defined
rules to the set scope. TheMatchdata is a list of elements extracted from the in-
dex “tagpatterns” and contains the regular expressions and the corresponding
tags. Ablock is a set of sessionsdefinedby start and stop timeused todetermine
the scope to work on.

Algorithm 1 Analyzer main program flow
1: proceduremain(argc, argv)
2: parse Arguments
3: check Dependencies
4: read Matchdata from Elasticsearch
5: if argScope = single id then
6: analyzeSession(session)
7: else if argScope = block then
8: calculate scope of block
9: for each session in scope do
10: analyzeSession(session)
11: end for
12: else if argScope = all then
13: for each session in database do
14: analyzeSession(session)
15: end for
16: end if
17: cleanup
18: end procedure

The function “analyzeSession” analyzes only one session and is just called
more often for the different scopes.We decided to design the programflow this
way so that all the functionality concerning the data is centralized in one place
and not scattered across different functions. This means of course that some
optimizations could not be implemented since the function handling all the
logic has only access to one session, but we decided that in this case a simple
and a more stable execution of the program is more important than the exe-
cution time. This design also has the advantage that a multithreaded imple-
mentation is easily possible in the future, since the “analyzeSession” function
can be seen as an atomic block. The scope is set with the program arguments
when the program is called and once started can not be changed. See section
3.7 for more information on the possible arguments. It is possible for different
instances of the Analyzer to have overlapping scopes. That poses no problem
if the same version is used since the actions on the Elasticsearch database are
atomic. But we recommend to only have one running instance because the An-
alyzer is designed in a way that does not increase the performance using mul-
tiple instances. If a performance increase is needed it would be better to update
the Analyzer to support multithreading.

3 Analyzer 13

The function “analyzeSession” handles the analysis of a single session which
includes fetching data from the Elasticsearch database, applying the custom
rules and storing inferred information into the Elasticsearch database. This
function can be seen as an atomic and is called for each session in the work-
ing scope. We decided to design it this way to make future work implementing
multithreading easier. Since this function is such an integral part of the pro-
gramwe describe it in more detail.

Algorithm 2 AnalyzeSession program flow
1: procedure analyzeSession(session_id)
2: check session id
3: extract session from elasticsearch and pcap files
4: if ruleVersion > old ruleVersion then
5: remove old hosts
6: for each rule in rule_ptrs do
7: execute rule
8: end for
9: remove old tags in ES
10: for each tag in tags do
11: add tag to ES
12: end for
13: set rule/analyzer version in ES
14: end if
15: end procedure

The step “check session id” is a check against a regular expression describing
theprefix“^[0-9]\{6\}\-.*”of the session IDwhich is always a six-digit number
representing the date the session was captured. This check does not guarantee
that the given session ID is valid, but it is a good indicator since we found that
most of the errors that lead to an invalid ID, change the String in such a way
that the prefix is too short or too long.

The “extract session from elasticsearch and pcap files” step searches the Elas-
ticsearch database for the given session ID and stores the returned JSONobject.
Further the raw data packets from the session are read from the pcap files if
those files exist. Since Arkime does not guarantee that the pcap files for a ses-
sion exist we too can not guarantee that the packets are provided for the rules.
The pcap files are stored on disk and the mapping from session to pcap file is
stored in an index in Elasticsearch. Thatmeans that in the next stepwhere each
rule is executed the JSON object is guaranteed and rules are not executed with-
out it. If packets are dependent on the packets a null check needs to be present
in the rule function itself. If a rule produces an error the program stops. There
is no error handling in the current version.

The session is only processed further if the current rule-version, set with the
option “RULEVERSION”, is higher than the rule-version stored in the session.
This prevents a second analysis with the same rule set. This check can be deac-
tivated with the “--ignoreversion” argument.

Executed rules add their tags into a list that is the same for all rules. When all
rules are executed, the old tags stored in Elasticsearch are deleted to prevent
a growth in the “tags” field if the Analyzer is executed on the same session
more than once. Then the collected tags are written to Elasticsearch. After that
the program and rule versions set in the compile options are written. For more
information on the options see section 3.8.

3 Analyzer 14

For debugging and further development, we point out that this function is a
core component of the analysis process and is called from all scopes. Mean-
ing that if this function works properly for the session scope it works for all
scopes. Additional logic deriving new information from the data should be put
in a custom rule to have a clean separation between code working on the data
and code needed as overhead handling the execution of rules and the commu-
nication with Elasticsearch.

3.2 JSONMapping

Arkime stores sessions as JSON objects in Elasticsearch which are parsed by
the Analyzer. Those JSON objects have a certain structure (mapping in Elastic-
search) that can changewith the version of Arkime.Meaning that thismapping
has to be checked after an update of Arkime. The Analyzer extracts the most
common fields with the function es_parse_session in the Elasticsearch module
and provides a session object to rules which can access the data without pars-
ing the JSON again. If fields are not provided in the session struct, a rule can
parse the original JSON object on its own. The es_parse_session function uses a
hardcoded static mapping that can lead to problems if not manually compared
with the objects stored in Elasticsearch. If objects are not where they are ex-
pected, the used library just returns a NULL value that can lead to a program
crash later in the execution of rules if not checked correctly. Out of time con-
strains we did not provide a dynamic solution, but one could prevent this er-
ror source by implementing a dynamic mapping in the Analyzer. This could be
achieved by defining a file where themapping from Elasticsearch is stored and
used by the Analyzer to get the structure and paths to objects. Alternatively,
a flattening approach would also solve this issue. If the JSON object is trans-
formed into a flat table with field names as keys, rules could just search in this
table and don’t have to consider the mapping at all.

Listing 3.1: Mapping example of older Arkime version
1 _source:{
2 "srcIp": "10.111.222.114",
3 "srcMac": ["58:cb:52:17:e0:06"],
4 "dstIp": "10.111.222.115",
5 "dstMac": ["58:cb:52:17:e0:07"],
6
7 }

Listing 3.2: Mapping example of newer Arkime version
1 "_source":{
2 "source":{
3 "ip": "10.111.222.114",
4 "mac": ["58:cb:52:17:e0:06"],
5
6 },
7 "destination":{
8 "ip": "10.111.222.115",
9 "mac": ["58:cb:52:17:e0:07"],
10
11 }
12
13 }

3 Analyzer 15

3.3 Interaction with Elasticsearch

Since the Analyzer is built in a way that, at runtime, data (except pcap files)
is not fetched from files in the file system but exclusively from Elasticsearch
and also the network traffic is stored in Elasticsearch, this interaction is a core
functionality. The function handling all interactions between the Analyzer and
Elasticsearch is called es_execute and is located in the “elasticsearch” module.
This function is an additional abstraction layer for the curl library functions.
That means that some options are hardcoded especially for this use case and
can’t be changed.

Listing 3.3: Signature of curl wrapper function
1 MemoryStruct∗ es_execute(char ∗url, char ∗payload)

The function takes two parameters, “url” and “payload” which are strings
defining the commands to execute, The parameter “url” has to be set and the
parameter “payload” can be NULL when no payload is required for the com-
mand. Each call of es_execute is equivalent to a curl command in a terminal
with the url-parameter being the url argument and the payload-parameter be-
ing the data (-d) parameter. The returned struct is a memory area that is filled
with the result of the curl execution which is a JSON object in text format. The
memory for the returned struct is allocated by the function but not managed
whatsoever, meaning the caller has to free the struct later on. Since this func-
tion is only used by the Analyzerwe decided to keep the interaction as simple as
possible resulting in someoptionshardcoded. If the commandproduces output
larger than Elasticsearch has set as maximum return value the query has to be
traversed in batches. This function has, at the current state of development, no
checks built in if the result returned by Elasticsearch contains all documents or
not. This has to be checked by the caller but can be done by checking the re-
turned JSON object. If this happens the original command has to be expanded
with the scroll parameter and all following calls have to set the scroll parameter
in the payload instead of a query. If a scroll parameter is given, the associated
query is automatically executed by Elasticsearch returning the next batch of
results.

3.4 Tagging Rules

The rules are functions in the “rules” module that are applied by the Analyzer
for each session in the working scope. Since those rules will not change fre-
quently we decided to add them in a module which will be compiled with the
Analyzer. This means that the rules are not entirely separated from the apply-
ing program but somewhat interleaved. A rule has to use the following signa-
ture.

Listing 3.4: Signature of a rule and type definition
1 void rule_name(Session ∗session, LinkedList ∗tags);
2 typedef void (∗rule)(Session∗, LinkedList∗);

Where the arguments session and tags are set by the Analyzer. The session ar-
gument holds the JSON object, some parsed values and the raw packets for the
current session. Since the raw packets are not always stored by Arkime it is not
guaranteed to be populated in the session struct e.g. session->packets is NULL.
If a rule wants to add a tag to the current session the tag needs to be added to

3 Analyzer 16

the tags argument with the following call, which only adds the tag if it is not
already stored to preventmultiple instances of the same tag. Further, rules can
delete tags stored by other rules already executed.

Listing 3.5: Add/Delete a tag in a rule
1 int ll_add_string_distinct(LinkedList ∗taglist, char ∗tag);
2 int ll_delete_string(LinkedList ∗taglist, char ∗tag);

Rules can access the global matchdata and the global arguments which are
guaranteed to be set by the Analyzer before applying the rules. The variable
extern MatchData *matchdata contains the regular expressions with the corre-

sponding tags extracted fromtheElasticsearch index“tagpatterns” in a simple
list. The variable extern Arguments glb_args contains the arguments struct with
the arguments which the Analyzer was called.

After defining a rule, the function name has to be added to the rule_ptrs array
defined in the rulee module. This is necessary for the Analyzer to know which
rules to apply. Rules that are not in the array will be ignored by the Analyzer.

Listing 3.6: rule_ptrs array
1 rule rule_ptrs[] = {
2 rule_encrypted,
3 rule_updates,
4 rule_dns,
5 rule_nosource,
6 rule_dns_error,
7 rule_test,
8 };

The tags list is the same object per session for all the rules. Since the rules are
applied in the order given in the rule_ptrs array, rules can delete the tags from
its predecessors or use the tags as a form of communication between rules to
create dependent rules.

3.5 Update Tagging

The goal of the update tagging is to automatically detect updates in the net-
work traffic andmark the corresponding sessionswith a tag. There exists work
for clustering of network traffic focusing on awider view that could be adapted
to detect updates [2, 6]. Most of the newer methods for clustering and clas-
sification are based on machine learning algorithms requiring a training set.
Since we do not have a sufficiently large training set we focus here on solu-
tions that produce data that can be used in future work to implement such a
machine learning algorithm. Android updates are fetched fromanOTA-server1
over HTTPS. That means that we loose features useful for the detection. Some
features lost are for example the host headers, request path, and parameters,
basically everythingabove theOSI-layerwhereTLS is implemented (e.g. Appli-
cation layer) is lostbecause theTLScommunicationchannel is encrypted. Some
features, like the hostname, are potentially recovered by the DNS-tagging
functionality described inSection3.6or other customruleswhilemost of them,
especially the content, are lost.

In the following we describe potential methods to discover updates and build a
data set for futurework.Thementionedmethodsarenot anexhaustive list of all
1https://source.android.com/devices/tech/ota/ab

https://source.android.com/devices/tech/ota/ab

3 Analyzer 17

possibilities but only a selected set of methods we considered. All the methods
mentioned could be used, but we decided to only implement one solution.

3.5.1 Potential Methods

Hostname Zaman et al. [13] proposed amethod to detectmalware by compar-
ing the URLs with a blacklist and Saidi et al. [9] proposed a method to detect
IoT devices. Both methods are similar and can also be used to detect updates
by maintaining a list of known update URLs the devices connect to. The main
problem with this approach is the static behavior of the list. Meaning this list
has to be created by hand and changes to the hostnames are not detectedwhich
makes a periodical check necessary. Further, the reliability of this approach is
relatively low because one hostname is potentially not only used for updates.

IP address Similar to the hostname approach, a list of update servers ismain-
tained, just instead of using the hostnames, the IP addresses are used. This ap-
proach has all the disadvantages of the hostname approach plus the problem
that the IPaddresses canchange frequently. Further, theURLto theOTA-server
is stored on the device, whichmakes the hostname approach better suited. For
example in HTC devices the URL is stored in the service “HTCOTAClient.apk”
or “HTCCheckin.apk”2.

Data size The packet size is stored by Arkime and used in this approach to
identify updates. Sessions exceeding a certain size threshold aremarked as up-
dates. Theproblemwith this approach is that agood threshold isnot easy tode-
termine because updates have different sizes. Additionally, this method guar-
antees false positives (normal large packets) and false negatives small updates.

Update DB In this approach a supervisor triggering the device updates stores
the start and stop time of each update per device in a database. This could also
be done by the device if changes to the device are allowed. The tagging is done
by the Analyzer with the information provided by the update database and the
traffic. This approach has the disadvantage that the database for the update
data has to be filled by a systemwhich has to be implemented.

We evaluate the approaches with three dimensions depicted in Table 3.1, man-
ual work being the effort for personnel building andmaintaining the solution,
accuracy representing ameasure howmany false positives and false negatives
we expect and reliability the long term stability. Since we could not find a sat-
isfying approach to detect updates only from the traffic data we decided to im-
plement the Update DB Approach since it is the only method with a high accu-
racy and reliability. Further, a large collection of training data can be acquired
helping the implementation of more sophisticated classifiers.

Table 3.1: Comparison of update tagging solutions

Approach Manual work Accuracy Reliability

Hostname medium medium medium
IP address medium medium low
Data size low low low
Update DB medium high high

2https://www.droidwiki.org/wiki/OTA-Server

https://www.droidwiki.org/wiki/OTA-Server

3 Analyzer 18

3.5.2 Implementation

The Analyzer implements the update detection with a custom rule in the
“rules” module. This rule checks for every session if an update is stored in
the database and marks the session with the tag “update”. This tag is stored
in Elasticsearch and with that automatically shown in the Arkimeviewer.

The required database is realized as a custom index “updates” in the already
existing Elasticsearch database. This index needs to be filled with data from
an external source. Here we assume that this part will be done in follow-up
projects. The external source could be a supervisor that triggers the updates on
devices or the devices themselves if modifications of the devices are allowed.
All that is needed is an execution of the curl command shown in Listing 2.8 at
the beginning and optionally the end of an update to provide the necessary in-
formation.

Anupdate is linked to a clientwith its VLANand timestamp. For theAnalyzer an
update for a device is valid, if the VLANmatches with an update entry in Elas-
ticsearch and the timestamp from the session is in the scope of themost recent
update. The scope of an update is the time it takes to be performedmarkedwith
a startmarker and terminatedwith an endmarker (see Figure 3.2).Markers are
documents in the Elasticsearch index (see Section 2.3). The end marker is op-
tional and the scope of those updates can be set via the compile-time options
described in section 3.8. If more than one update is in the scope of one session
only the nearest is actually considered. At the current state it makes no differ-
ence since a static tag isused for all updates, but canbe relevantwhen introduc-
ing dynamic tags withmore information in them. This case should not happen
in practice since devices do not run updates that frequently, but this can be an
error source in the future if the data in the index “updates” is not accurate.

(a) Update range

(b) Update example

Figure 3.2: Update tagging

3 Analyzer 19

3.6 DNS Tagging

Arkime stores only the source and destination IP addresses for a session which
makes the analysis of the traffic harder. To improve the usability the goal of
the DNS tagging is to link those IP addresses a client connects to with potential
host name candidates stored as tags.We decided to condense the hostnames to
simple tags with a mapping of regular expressions to tags.

There already exists work on analyzing network traffic utilizing DNS data [5,
10, 12].We come to the same conclusion that a static approach described in 3.6.1
is not viable, and instead perform the analysis on the real captured DNS traffic.

DoH (DNS over HTTPS) [3] and DoT (DNS over TLS) [4] would compromise our
approach so much that the Analyzer could not perform the DNS tagging any-
more for obvious reasons. For simplicity, we do not consider those cases in the
current solution and reference to already existing work that solves this prob-
lemwith ML classifiers [11].

3.6.1 Potential Method

Onesolutionweconsidered is a static dataset containingknownhostnamesand
the resolved IP addresses computed either at each execution of the Analyzer
or precomputed at some point in time. Additionally, IP addresses not stored
in the list are resolved to hostnames with rDNS queries at analysis time. With
suchanapproachcertainproblemsarise that are reducing the reliability to such
an extent that the usability of this solution is very limited. The problems we
identified are caused by the nature of the domain name system [7] and are as
follows.

A records which link a hostname to an IP address can change over time
causing the stored data to differ from the actual records. This difference is
bound to happen at some point in time since the list is only expanded with
unknown hostnames at analysis time. This on-the-fly resolution just as-
sures that all the occurring hostnames are stored, but does not fix the un-
derlying problem of changing A records.

PTR records which link IP addresses to hostnames, which can again point
to A records, CNAME records or even no record, can also change over time
resulting in a similar difference.

PTR records resolved at analysis time may not always match the A record
resolved by the device at communication time. This would result in a dif-
ference between the mapping stored by the Analyzer and the mapping the
device used.

AnA record can resolve tomultiple IP addresses and oneDNSnode canhave
multiple A records resulting in a many-to-one mapping. Similar to that,
there can also be multiple CNAME records pointing from multiple differ-
ent hostnames to one CNAME resulting in amany-to-onemapping overall.
This many-to-onemappings increase the complexity of a static solution.

PTR records are one to many mappings making it difficult to determine
which hostname was requested originally.

3 Analyzer 20

3.6.2 Implementation

Toavoid thiskindofbehaviorwedecided toworkwith thehostnames requested
by the clients via DNS requests extracted directly from the real traffic stored in
Elasticsearch. We use the data prior to the session so that we know what the
actual datawas the client had at hand. To extract the hostnameswe start with a
session (the session the Analyzer currently processes) as seen in Figure 3.3 and
extract the IP address. Then all the sessions prior to the session in work that
are DNS requests and are in the time scope defined by the compile options are
extracted. We extract more than the most recent request to get all hostnames
associatedwith the IP address. This is necessary because A records are amany-
to-one mapping meaning that multiple hostnames can point to the same IP
address. Which means that we cannot determine which DNS request provided
the IP address for a specific session since the device can cache DNS responses
and reuseolder requests. This list ofDNS requests is additionallyfiltered for the
IP address the session in work had to limit the list to the relevant requests. The
hostnames extracted from the sessions are resulting in a list of hostnames for
each session inwork. Further, we only consider requests from the same device,
which is identified by the VLAN, to abide the device separation.

To get the tags we have to extract the tagpatterns from the custom index “tag-
patterns” described in section 2.4. Each tagpattern contains a regular expres-
sion and a list of corresponding tags. Each hostname is then matched against
each tagpattern. If the tagpattern matches, the corresponding tags are stored
in a list. Those tags are stored distinctively so that duplicate tags in the tag-
patterns are not a problem. We are aware that this procedure results in a bad
runtime performance, but it is very stable and guarantees that all the tags are
applied.This function is implementedasa customrule in thefile rules.hnamely
“rule_dns”. If the argument “hosts” is set, all the found hostnames are stored
in thefield “FoundHosts”. Thatmakes it easier to identifymissing tag patterns
and false positives.

Figure 3.3: Hostname extraction

3 Analyzer 21

Figure 3.4: DNS resolution with intermediate steps

In the resolution of hostnames it can happen that a CNAME record is returned
which points to another record (see Figure 3.4). This would mean for the Ana-
lyzer that the reverse DNS resolution would have to be performed in a cascade
until anA recordwas found resolving the IP address to a hostname.We saw that
we only have DNS requests that span over a single session which means that
we only have to search for stored DNS data and can treat them as A records,
mapping hostnames directly with IP addresses. It is possible that DNS queries
span over multiple sessions, creating DNS sessions in Arkime that do not have
the expected format. There are further exceptions like multicast DNS (mDNS)
records which are not supported at the current version and DNS requests with
no IP stored. This can happen if the query type has no IP like HINFO, SOA and
NS, or the querywas refused indicatedwith the status code REFUSED.Wemen-
tion those cases which obviously have no IP address because they are stored
the sameway as normal DNS request are, which could lead to problems if rules
access the JSON data of the session directly. The DNS data stored by Arkime
contains the hostnames and, if present, the CNAMEs of requests. If such a case
where a DNS request has no IP address stored is found the session is marked
with the tag “error-DNS-noIp”. All of those entries are used by the Analyzer
andmatched against all tagpatterns present in the index “tagpatterns”.

The static scope, meaning the timespan in which DNS requests are searched is
the same for all requests, of this solution proves to be a problem because with
only the session in work we do not know when the DNS request was sent and
if the request was cached. The problem is that we cannot consider all stored
DNS requests because it would slow down the analysis too much, although it
would be an option that would produce themost complete set of requests. If we
only look at a short time span we could miss requests that are older. We had
to make a compromise on the scope since we had to balance performance with
completeness of the results and decided to set the time to look into the past to
one hour. With that time frame most of the longer lived requests should be in
the scope and analyzed.

The better solution would be a per-device DNS cache similar to the solution
proposed byWoodruff et al. [12], which we did not implement due to time con-
strains. Such a cache would not only increase the performance of the Analyzer
but also provide a complete list of DNS requests. The performance increase is
achieved by replacing the search of older DNS requests by a simple query from
the cache.

Since we use Elasticsearch for data storage it would make sense to implement
such a cache as custom index. Cache entries would be documents which hold
the DNS information like IP address, hostname, timestamp, and TTL. An im-
plementation directly into the Analyzer does not work as long as the architec-
ture is not changed to a non-terminating program flow.

The Analyzer would have to be extendedwith an update and fetch functionality

3 Analyzer 22

Figure 3.5: DNS device cache

for the cache. Where the update function stores the DNS request as a cache en-
try as the Analyzer progresses through the network traffic. When the Analyzer
works on a session, the DNS data is not searched in the data traffic but fetched
from the cache. This works as long as the traffic is progressed in order, from
oldest tomost recent session. Since the used Arkime version does not store the
TTL from DNS requests it has to be extracted through a second channel when
a cache update is performed which could lead to a problem if older sessions
are analyzed where the DNS entries already changed in the time between the
capture-time and analysis-time. Since there are no guidelines on how to set
the TTL this is especially a troubling problem [8]. This could be solved with
a caching solution proposed by Woodruff et al. [12] directly storing the DNS
data when queries are processed, instead of relying on post-processing of data
stored by Arkime.

3.7 Runtime Options

The runtime options have to be set for each call of the Analyzer. The options are
checked automatically for syntax and use errors with the gnu libmodule argp3.
The program expects some arguments and terminates if no arguments are set.
This behavior should prevent an executionwith thewrong scope set because of
default values. An example execution would be as follows:

Listing 3.7: Example Analyzer call
1 ./Analyzer −o −−hosts −−id=210823−MBplZzu0XOxHtbAUOmkk4BN3

All options, listed in Table 3.2, have a long and a short form that set the same
option. We designed this part to behave like other standard Linux programs.
Some listed options override the default values of compile-time options.

3https://www.gnu.org/software/libc/manual/html_node/Argp.html

https://www.gnu.org/software/libc/manual/html_node/Argp.html

3 Analyzer 23

Table 3.2: Runtime options

Long form Short Argument Description

--help -h — print help
--all -a — set scope to all sessions
--cutoff -c time in

hours
set scope to a block of sessions

--id -i id of
session

set scope to one single session

--hosts -h — store the found hosts
--verbose -v — print additional information
--nopcpap -p — Activate the nopcapmode, inwhich

the pcap files will not be extracted
and not set in the session argument
used by rules

--esurl -e URL to
Elastic-
search
db

Overrides the default value of
ES_URL

--pprefix -P prefix Overrides the default value of
PCAPPREFIX

--ignoreversion -I — Disables the rule version check

Thehelpoptionprints informationon theusageof thedifferent options like
in other Linux command line programs.

The all option sets the scope for this run to the scope is every session found
in the database.

The cutoff option sets the scope for this run to the scope is a block of ses-
sions between the time of the call and the given parameter in hours. This
option needs an argument like --cutoff=1 for the last hour.

The id option sets the scope for this run to the scope is a single session. For
example --id=210823-MBplZzu0XOxHtbAUOmkk4BN3.

The hosts option is a flag that determines if the found hosts for the DNS
tagging should be stored in the Elasticsearch db.

The verbose option is a flag that determines if additional information
should be printed on the command line. This option is primarily for debug-
ging and should only be used in combination in the id-scope since printing
to the terminal is slow for a larger scope.

The esurl option overrides the value set by the compile option ES_URL.

Thepprefixoptionoverrides thevalues set by the compile optionPCAPPRE-
FIX used for communication with Elasticsearch.

The nopcap option is a flag that sets the Analyzer into the nopcap mode in
which no pcap files are read and sessions are not filled with packets.

The ignoreversion option is a flag that disables the rule version check for
sessions.

3 Analyzer 24

3.8 Compile-time Options

The compile-time options listed in Table 3.3 are located in themodule glbs and
have to be set before compiling the program. These options should not change
frequently since most of the options determine the interaction with Elastic-
search, which is important if the Arkime version changes.

Table 3.3: Compile-time options

Option Type Description

DEBUG Bool Print additional debug information
PROG_VERSION String Version to store in database
RULEVERSION Integer Version of the rules used for preventing

double analysis of sessions
MAXUPDATELENGTH Integer Defines the scope for update-tagging
MAXDNSTIME Integer Defines the scope for dns-tagging
ES_URL String URL to Elasticsearch db
ES_DOC String Document endpoint fromElasticsearch
ES_INDEXPREFIX String Prefix used from Arkime for sessions

ids
ES_FILEINDEX String Name of the indexwhere Arkime stores

the pcap files
ES_TIMESTAMP String Name of the Timestamp field used by

Arkime
ES_UPDATE String Update endpoint
ES_SEARCH String Search endpoint
ES_ALL String All endpoint
ES_TAGPATTERNS String Name of the custom index where the

tagpatterns are stored
ES_UPDATES String Name of the custom index where the

update data is stored
ES_INDEXCHECK_ERROR String String for Index check
ES_INDEXCHECK_OK String String for Index check
PCAPPREFIX String Prefix used by Arkime for pcap file-

names
PCAPFOLDER String Path to the folder where Arkime stores

the pcap files

DEBUG: Set this to true if more detailed debug information should be
printed.

PROG_VERSION: Simply a string used for indicating with which version a
session was analyzed.

RULEVERSION: Set the version of the current rule set. This option is used
by the Analyzer to prevent a double analyzation of the same session.

MAXUPDATELENGTH & MAXDNSTIME: Set the scope of the update- and
DNS-tagging respectively. The time is set in milliseconds.

3 Analyzer 25

ES_*: All options with the prefix “ES_” configure parts of the curl com-
mands used by the Analyzer. Set this options according to the Elasticsearch
mapping and overall configuration.

PCAPPREFIX & PCAPFOLDER: Set the prefix used by Arkime for naming the
pcapfiles and the folder thefiles are stored in. Extract this information from
Arkime and set it accordingly.

3.9 Status Indication

The Analyser uses four different information messages which are printed to a
stream defined in the module glbs. Per default, we use stdout.

OK: Indicating that a step is successfully completed.

INFO: A marker for general information on the current instance of the An-
alyzer.

WARNING: A warningmeans that something went wrong, but the program
can still continue. A common example is when packets in the pcap files are
missing. Sometimeswarnings canbefixedwitha secondexecutionat a later
time so possible missing data is written by Arkime.

ERROR: An error indicates a problem that cannot be solved automatically.
The program terminates in this case.

A successful execution prints the following lines indicating that everything
went fine.

Listing 3.8: Analyzer Status Output
1 [OK] arguments parsed succsessful
2 [OK] dependencies checked
3 [OK] extracting of matchdata succsessful
4 [INFO] execution time: 19.00 seconds

3.10 Dependencies

This programhas the two custom indices updates and tagpatterns described in
section 2.3 and section 2.4 respectively as dependencies. Further there are two
libraries needed for compiling the program. Namely, libcurl4 for the Elastic-
search interactions and libjson5 for parsing JSON objects. Further an Elastic-
search database with the Arkime indices is necessary.

4https://curl.se/libcurl/
5https://json-c.github.io/json-c/json-c-current-release/doc/html/index.html

https://curl.se/libcurl/
https://json-c.github.io/json-c/json-c-current-release/doc/html/index.html

Chapter 4

FutureWork

4.1 Improvements of Core Principles

Update detection The update detection is at this stage of development not au-
tomated in the sense that updates are detected without the need of human
work. The approachesof thisworkwere all static solutions thathave significant
drawbacks, especially the long term maintenance of static rules and host lists
pose a significant problem.To solve that problemof static solutionswepropose
amachine learning approachwith a supervisedmachine learning algorithm. Of
course there is the open question, if the available data provides enough infor-
mation for the algorithm to work. Since most of the traffic is encrypted, ba-
sically only metadata is usable as input. The first step to this approach would
be to acquire a sufficiently large training set. In this case that means using the
implemented solution to tag sessions.

DNS cache As mentioned in section 3.6 a per-device cache would be a good
improvement in termsof runtime, andqualityof theuseddata.This cachecould
be implemented as an update to the Analyzer or as a stand-alone project.

4.2 Miscellaneous Improvements

The following ideas improve the overall usability of the Analyzer but don’t
change the core principles on which the solution builds upon:

Dynamic rules At the current version, rules are compiled into the Analyzer. It
could make sense to separate the logic of the Analyzer from the rules, so that
changes to one do not affect the other. With that, one could introduce a script-
ing support to increase flexibility.

Yara support A yara rule support would enhance the usability because rules
would not need to define a logic how to analyze a packet but only provide a rule
to apply. That would not only enhance the readability but also reduce the prob-
ability of errors. There is already a project that could be used1.

JSON mapping Arkime versions change the mapping in the Elasticsearch
database for sessions and the naming scheme of indices. Since the Analyzer
works directly on the database those changes lead to a crash. To prevent this,
it would be useful to support a dynamic mapping or option files where the dif-
ferent names and paths can be set without compiling the Analyzer.
1https://yara.readthedocs.io/en/v3.4.0/capi.html

26

https://yara.readthedocs.io/en/v3.4.0/capi.html

References

[1] Arkime. 2022. Arkime FAQ. https://arkime.com/faq#data-never-gets-d
eleted.

[2] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. 2006. Traffic Clas-
sification Using Clustering Algorithms. In Proceedings of the 2006 SIG-
COMMWorkshop on Mining Network Data (MineNet ’06). ACM, Pisa, Italy,
pp. 281–286. doi: 10.1145/1162678.1162679.

[3] Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS
(DoH). RFC 8484. (October 2018). doi: 10.17487/RFC8484.

[4] Zi Hu, Liang Zhu, John Heidemann, AllisonMankin, DuaneWessels, and
Paul E. Hoffman. 2016. Specification for DNS over Transport Layer Secu-
rity (TLS). RFC 7858. (May 2016). doi: 10.17487/RFC7858.

[5] Jason Kim, Hyojoon Kim, and Jennifer Rexford. 2021. Analyzing Traffic
by Domain Name in the Data Plane. In Proceedings of the ACM SIGCOMM
Symposium on SDN Research (SOSR). ACM, New York, NY, USA, pp. 1–12.
doi: 10.1145/3482898.3483357.

[6] Yingqiu Liu,Wei Li, and Yunchun Li. 2007. Network Traffic Classification
Using K-means Clustering. In Second International Multi-Symposiums on
Computer and Computational Sciences (IMSCCS 2007), pp. 360–365. doi: 1
0.1109/IMSCCS.2007.52.

[7] Paul V. Mockapetris. 1987. Domain names - concepts and facilities. RFC
1034. (November 1987). doi: 10.17487/RFC1034.

[8] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes
Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-to-Live. In
Proceedings of the Internet Measurement Conference (IMC ’19). ACM, Ams-
terdam, Netherlands, pp. 101–115. doi: 10.1145/3355369.3355568.

[9] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Had-
dadi, Daniel J. Dubois, David Choffnes, Georgios Smaragdakis, and Anja
Feldmann. 2020. A Haystack Full of Needles: Scalable Detection of IoT
Devices in the Wild. In Proceedings of the ACM Internet Measurement Con-
ference (IMC ’20). ACM, Virtual Event, USA, pp. 87–100. doi: 10.1145/3419
394.3423650.

[10] Sadegh Torabi, Amine Boukhtouta, Chadi Assi, and Mourad Debbabi.
2018. Detecting Internet Abuse by Analyzing Passive DNS Traffic: A Sur-
vey of Implemented Systems. IEEE Communications Surveys Tutorials, 20,
4, 3389–3415. doi: 10.1109/COMST.2018.2849614.

[11] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. 2020. DoH Insight: De-
tecting DNS over HTTPS by Machine Learning. In Proceedings of the 15th
International Conference on Availability, Reliability and Security (ARES ’20).
ACM, Virtual Event, Ireland, 8 pages. doi: 10.1145/3407023.3409192.

[12] JacksonWoodruff,Murali Ramanujam,andNoaZilberman. 2019. P4DNS:
In-Network DNS. In 2019 ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems (ANCS), pp. 1–6. doi: 10.1109/ANCS
.2019.8901896.

27

https://arkime.com/faq#data-never-gets-deleted
https://arkime.com/faq#data-never-gets-deleted
https://doi.org/10.1145/1162678.1162679
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC7858
https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1109/IMSCCS.2007.52
https://doi.org/10.1109/IMSCCS.2007.52
https://doi.org/10.17487/RFC1034
https://doi.org/10.1145/3355369.3355568
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1109/COMST.2018.2849614
https://doi.org/10.1145/3407023.3409192
https://doi.org/10.1109/ANCS.2019.8901896
https://doi.org/10.1109/ANCS.2019.8901896

References 28

[13] Mehedee Zaman, Tazrian Siddiqui, Mohammad Rakib Amin, and
Md. Shohrab Hossain. 2015. Malware detection in Android by network
traffic analysis. In 2015 International Conference on Networking Systems
and Security (NSysS), pp. 1–5. doi: 10.1109/NSysS.2015.7043530.

https://doi.org/10.1109/NSysS.2015.7043530

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	Introduction
	Motivation
	System Overview
	Network Setup

	Arkime / ELK Setup
	Arkime Setup
	Indices
	Custom Index ``updates''
	Custom Index ``tagpatterns''

	Analyzer
	Program Flow
	JSON Mapping
	Interaction with Elasticsearch
	Tagging Rules
	Update Tagging
	Potential Methods
	Implementation

	DNS Tagging
	Potential Method
	Implementation

	Runtime Options
	Compile-time Options
	Status Indication
	Dependencies

	Future Work
	Improvements of Core Principles
	Miscellaneous Improvements

	References

