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Abstract

The fragmented nature of the Android market makes it difficult
to enforce consistent security practices across all devices and ven-
dors. Low-level and hardware-bound components such as the boot-
loader, Fastboot, kernel, device drivers, and the recovery partition
are vendor-specific. Each vendor must implement the standard Hard-
ware Abstraction Layer interface for Android to communicate with
the hardware. These deviations are typically located in the vendor
partition of the device.

We identify a critical vulnerability, which we name AVBTest-
KeyInTheWild, in the Android firmware supply chain that enables
attackers to flash modified firmware images onto locked devices
without wiping the userdata partition. By exploiting weak sign-
ing practices, such as the use of Android Open Source Project test
keys in production firmware, attackers can bypass bootloader in-
tegrity checks, retain user data, and compromise device security
without user interaction. The vulnerability affects multiple manu-
facturers and devices, posing significant risks to user privacy, de-
vice integrity, and the Android ecosystem as a whole. We provide
a detailed analysis of the attack path, demonstrate exploitation on
devices from different System-on-Chip vendors, and highlight the
limitations of current integrity verification mechanisms, such as
Android Verified Boot and key attestation. Because the vulnera-
bility impacts multiple vendors, we decided to work with Google,
in addition to the impacted OEMs, on the coordinated disclosure
process to inform all involved parties properly. The vulnerability
was reported privately with an ethical vendor response window of
90 days before public disclosure. While, to the best of our knowl-
edge, impacted devices cannot be fixed, we suggest detection mech-
anisms and mitigation strategies. These include stricter firmware
signing protocols, enhanced attestation processes, and improved
testing frameworks, to prevent the production of vulnerable de-
vices in the future.
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1 Introduction

The Android ecosystem relies heavily on the integrity of its firm-
ware and a secure supply chain. Android devices are organized into
multiple partitions, each serving a specific purpose. The system
partition contains the core operating system files, while the vendor
partition houses hardware-specific drivers and configurations. The
boot partition includes the kernel and ramdisk, which are essen-
tial for initializing the operating system. User-specific data, such as
app settings and personal files, are stored in the userdata partition.
This partition is encrypted with a synthetic password to protect
sensitive information, and it is wiped during a factory reset to re-
store the device to its default state [4]. The synthetic password
is encrypted with a key derived from the Lock Screen Knowledge
Factor (LSKF) and stored on disk, whereas the LSKF is stored in the
hardware-backed keystore. Other partitions, often vendor-specific,
may also exist to support additional functionality.

The vbmeta partition, a cornerstone of Android Verified Boot
(AVB), contains cryptographic signatures and hashes that are used
to validate the integrity of other partitions. As an orthogonal side
note, not all partitions are included in vbmeta, and major vendors,
including Google, have partitions excluded from the AVB process.
These excluded partitions must be verified through different means
—usually on a different processor such as the radio/modem. If an
attacker possesses signing keys for these excluded partitions, they
can modify and re-sign them without detection through the (AVB-
based) device integrity attestation. However, partitions holding code
not executed on the main CPU (a.k.a. Application Processor, AP)
are outside the scope of this paper.

Android Open Source Project (AOSP) includes, among others,
private test key(s)! to sign the vbmeta partition disk image. This
allows for an easier development process, without the need to gen-
erate new public-key pairs. While this allows for easier, automated
testing of the code base, it poses serious issues when used in produc-
tion-grade firmware images. With the possession of the signing

!https://android.googlesource.com/platform/external/avb/+/refs/heads/main/test/
data/


https://android.googlesource.com/platform/external/avb/+/refs/heads/main/test/data/
https://android.googlesource.com/platform/external/avb/+/refs/heads/main/test/data/

key, attackers are able to rebuild the full vbmeta hashtree and mod-
ify all included partitions, while replacing the signing keys of the
modified partitions.

Existing mitigations against such insider attack threats include
the Gatekeeper and Weaver components which implement func-
tionality to protect existing data from exfiltration using the LSKF
and transparency logs that contain public tamper-evident records
of release firmware versions to detect targeted attacks [13].

In this work we identify AVBTestKeyInTheWild, a critical vulner-
ability in the supply chain of multiple Android device manufactur-
ers that allows attackers to bypass bootloader integrity checks and
modify firmware on locked devices. We verified the vulnerability
by exploiting devices actively sold in retail stores within the Euro-
pean Union at the time of writing. Devices from different System-
on-Chip (SoC) vendors including Fairphone 3 (Qualcomm), Tecno
Spark 10 Pro (MediaTek), and Cubot A1 (Unisoc) were successfully
flashed with modified firmware and locked bootloader, without
wiping the userdata partition and still passing all security checks.
Google Play Integrity, as well as tests from the Compatibility Test
Suite (CTS), currently do not detect tampered-with devices, which
means that apps successfully verify the integrity of susceptible de-
vices with modified firmware. The vulnerability exploits the usage
of public AOSP signing test keys! found in production-grade firm-
ware images from five different vendors so far, including but not
exclusive to Fairphone, Cubot, Tecno, Itel, and Infinix.

The implications of this vulnerability are far-reaching, impact-
ing device security, user privacy, and the trustworthiness of the
affected devices. We show that, under certain conditions, if sign-
ing keys to partitions not present in the vbmeta structure—or even
worse, the VBMeta-signing key itself—get leaked, Android device
integrity attestation fails on affected devices.

Initially the widespread usage of AOSP signing test keys in firm-
ware was discovered using androidﬁuniversalz, an open source tool
that was last updated in July 2021, about four years ago. This indi-
cates that the vulnerability existed for a long time and was known
by some individuals.

To allow for better analysis of the firmware images, we adapted
avbtool and upstreamed our changes®. The main contributions
are that instead of stopping verification on failure, all partitions
are verified, while the verification still fails. This helps users to see
which partitions can be verified successfully, even when one parti-
tion fails for any reason such as not being included in the firmware
image. It is common that not all partitions are distributed through
a firmware update. The new --allow_missing_partitions argu-
ment lets the verification succeed, even when some partitions are
missing. A new method print_signature_key to print the public
key of vbmeta and to check against known test keys in a subfolder
was also added.

A mass scan of available first-party Android firmware images
revealed that AOSP test keys, which are intended to sign partition
disk images during development, are found in production environ-
ments, making this vulnerability exploitable in a viable low-cost

“https://github.com/bkerler/android_universal
®https://android-review.googlesource.com/c/platform/external/avb/+/3604872
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manner in real-world scenarios. Attackers can leverage this weak-
ness for actions such as data extraction, rooting, and infecting de-
vices of targeted adversaries.

As our main contributions, we

« provide a detailed analysis of the vulnerability, its attack
path, vulnerable devices, and the impact on the Android
ecosystem,;

+ demonstrate exploitation of three Android devices from
different SoC vendors to highlight this impact;

« outline indicators of firmware modifications and challenges
in verifying device integrity;

» recommend mitigations for detecting and preventing test
key usage in production firmware; and

+ propose improvements to Android key attestation for en-
hanced security.

2 Background

The Android ecosystem is a collaborative framework involving mul-
tiple stakeholders, including AOSP, Google, device vendors, and
SoC manufacturers. AOSP provides the foundational codebase, while
Google defines compatibility standards through the Android Com-
patibility Definition Document (CDD)*. Device vendors customize
and distribute Android for their devices, often relying on SoC man-
ufacturers for hardware components and low-level firmware [13].

Compatibility and Integrity Tools. To enforce compatibility and
security, Android employs several testing and validation tools:

Compatibility Test Suite (CTS)" is a suite of automated tests
designed to verify a device’s compatibility with the CDD. Its main
objective is to verify functional and security requirements of de-
vices, enabling a consistent user experience across devices. Part of
the CTS is the Security Test Suite (STS), which includes tests for
known security issues.

Vendor Test Suite (VTS)® focuses on testing hardware-specific
components and their integration with the Android platform. These
tests ensure that vendor-specific implementations do not compro-
mise system security and compatibility.

Google Play Integrity API provides runtime integrity checks
for apps, allowing developers to verify the authenticity of the de-
vice and installed apps using hardware-backed key attestation. This
security layer helps to identify tampering, unauthorized modifi-
cations, and the use of compromised devices, while also assisting
Google in detecting statistical inconsistencies and evaluating the
security of devices in the field.

Android Verified Boot. When locked, the Android bootloader en-
forces strict integrity checks, ensuring that only verified firmware
can be loaded. Unlocking the bootloader bypasses these checks, al-
lowing custom firmware to be installed. This bootloader unlocking
process typically requires user interaction in the form of triggering
the OEM Unlocking setting in the developer options while the de-
vice is running and unlocked with the LSKF. Another option is to
use the fastboot flashing [unlock | lock] command. All

*https://source.android.com/docs/compatibility/cdd
Shttps://source.android.com/docs/compatibility/cts
®https://source.android.com/docs/core/tests/vts
"https://developer.android.com/google/play/integrity
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state transitions result in wiping of the data partitions [2] to pre-
vent unauthorized access to sensitive information and device tam-
pering. It is worth noting that this behavior depends on the device-
and vendor-specific bootloader implementation, which might not
comply with the standard. Android devices communicate their in-
tegrity status through boot states displayed during startup [1]. A

green state indicates that all partitions are verified using manufacturer-

provided keys, while a yellow state signifies a locked state in which
a user-installed root of trust is present. This verification process is
handled via the AVB?® framework, which checks the integrity of
partitions against their cryptographic signatures. An orange state
represents an unlocked bootloader, and a red state warns of cor-
ruption or the absence of a valid operating system. In our case, we
always achieved a green boot state, even with our modified parti-
tions, as the test keys used to sign these images were accepted by
the device bootloader.

Attesting Device Integrity. Keystore attestation is a critical fea-
ture enabling (remote) verification of cryptographic keys and their
associated properties, including the overall security state of the de-
vice on which they are held. This mechanism ensures that keys
are securely generated and stored within hardware-backed envi-
ronments, such as the Trusted Execution Environment (TEE) or
StrongBox. Attestation provides cryptographic proof that a key
was generated on a certified device and, assuming hardware se-
curity guarantees hold, has not been tampered with or exported.

The attestation process involves generating an attestation cer-
tificate, which includes metadata about the key, such as its ori-
gin, purpose, and security properties. This certificate is signed by a
hardware-protected attestation key, ensuring its authenticity. Nei-
ther the generated private key, which can optionally be secured
using the LSKF, nor the device-bound private key used for sign-
ing the attestation certificate can be exported or used outside the
secure hardware environment. Applications and backend services
can use this certificate to remotely verify the integrity of the key
and device security state. In particular, the attestation certificate in-
cludes information about the Verified Boot state, such as whether
the device bootloader is locked and running verified firmware.

We explicitly assume all related secure hardware environments—
including TEE hardware and software and, if available, StrongBox
components—to remain secure and the attestation certificates to
accurately represent all information passed on by the earlier stages
of AVB, specifically its lock state and the top-level hash of the vb-
meta partition itself.

3 The AVBTestKeyInTheWild Vulnerability

The vulnerability we found, AVBTestKeyInTheWild, takes advan-
tage of smartphone vendors using a master key, often an AOSP
test key, to sign the vbmeta structure.

3.1 General Attack Path

Step 1: Obtaining Firmware Files. In some cases, the original firm-
ware files can be extracted directly from the target device using

8https://source.android.com/docs/security/features/verifiedboot
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tools such as SPD Flash Tool® for Unisoc-based devices or MTK-
Client'® for MediaTek-based devices. These tools are widely avail-
able online and require only a USB connection to the device. Alter-
natively, firmware images can often be downloaded from external
sources.

Step 2: Unpacking, Analyzing, and Modifying Firmware. Once ac-
quired, the firmware can be unpacked using utilities like AndScan-
ner!! which allows for detailed inspection and modification of
the firmware components. In our proof of concept, we modified
the boot partition to install Magisk, which enables root access
and other customizations. This simple modification is sufficient
to demonstrate the vulnerability, as it shows the attacker running
code with the highest Android privileges on the device.

Step 3: Re-signing and Verifying Images. Using the AOSP test
key(s), we re-signed the modified boot.img and vbmeta. img files
that are subsequently flashed as the contents of the respective on-
device partitions. This process includes updating the vbmeta-footer
within boot.img to ensure consistency with the new signatures.
After modifying and re-signing the relevant images, the vbmeta. img
must be regenerated to reflect the changes. The avbtool can be
used to generate and verify the correctness of the updated vb-
meta. img by executing, e.g.,

avbtool.py verify_image --image vbmeta.img.

This step ensures that the cryptographic metadata aligns with
all modified partitions, allowing the device to boot without trigger-
ing integrity warnings [3].

Step 4: Deploying the Modified Firmware. Depending on the de-
vice, the final step involves either unlocking the bootloader or force-
overwriting existing partitions. While unlocking and re-locking
the bootloader requires force-erasing of the userdata partition,
most devices offer other means to flash partitions with locked boot-
loaders. However, such functionality is publicly available for only
a minority of vendors and devices.

A more detailed description of the proof-of-concept exploit can be
found in our Coordinated Vulnerability Disclosure (CVD)!2.

3.2 Vulnerable Devices

Our analysis of Android firmware images in the wild revealed that
many devices are vulnerable to the AVBTestKeylnTheWild vulner-
ability. We use an automated pipeline that receives Android firm-
ware images—previously downloaded with webscrapers from the
manufacturers’ websites in their vendor-specific formats—extracts
data from the included disk images, and analyzes the firmware
for potentially security-relevant findings. Through this system, we
identified 69 potentially vulnerable devices. Since we only used
publicly available first-party firmware images, this list is not ex-
haustive.

Fairphone 3. The vbmeta partition for the Fairphone 3 includes
the hashtree for multiple partitions but does not sign them with
separate keys. By exploiting this vulnerability, we were able to

*https://spdflashtool.com/
!Ohttps://github.com/bkerler/mtkclient
https://github.com/ernstleierzopf/ AndScanner/tree/main
2https://issuetracker.google.com/issues/416187987


https://source.android.com/docs/security/features/verifiedboot
https://spdflashtool.com/
https://github.com/bkerler/mtkclient
https://github.com/ernstleierzopf/AndScanner/tree/main
https://issuetracker.google.com/issues/416187987

Table 1: Vulnerable devices

Cubot J5 Cubot MAX 5 Cubot TAB 50 Cubot KingKong AX
Cubot J7 Cubot X30 Cubot Note 20 Cubot KingKong X70
Cubot J8 Fairphone 3 Cubot Note 30 Cubot KingKong Star
Cubot J9 Fairphone 4 Cubot Pocket 3 Cubot KingKong Star 2
Cubot A1 Redmagic 3S Cubot Quest Lite Cubot KingKong Power
Cubot C20 Redmagic 5G Cubot X30 P Cubot KingKong Power 3
Cubot J10 Redmagic 58 Cubot Ace 3 Cubot KingKong 5 Pro
Cubot R15 Redmagic 6R Cubot R15 Pro Cubot KingKong ACE 2
Cubot P50 Redmagic 6 Redmagic Mars Cubot KingKong ACE 3
Cubot P60 Cubot Note 7 Redmagic 6 Pro Cubot KingKong Mini 3
Cubot P40 Cubot Note 8 Redmagic 6S Pro Cubot TAB KingKong
Cubot J20 Cubot Note 9 Cubot KingKong 5 Cubot TAB KingKong 2
Cubot X50 Cubot Pocket Cubot KingKong 6 Cubot KingKong Mini 2 Pro
Cubot P80 Cubot Quest Cubot KingKong 7 Asus ZenFone Max (M2)
Cubot C30 Cubot TAB 10 Cubot KingKong 8 Tecno Spark 10 Pro
Cubot MAX 2 Cubot TAB 30 Cubot KingKong 9 Infinix Hot 50 Pro 8
Cubot MAX 3 Cubot TAB 40 Cubot KingKong X

flash a Magisk-modified boot . img while maintaining a green boot
state and passing all security checks, including the MEETS_STRONG_
INTEGRITY flag. Partitions can be flashed without requiring a wipe
of the userdata partition due to an additional vulnerability in the
handling of the bootloader lock state. In an older version of the
Fairphone 3 firmware, the vendor included a special devinfo par-
tition, which was used to unlock the bootloader. This unlocking
process did not automatically wipe the userdata partition, instead
relying on a setup script to wipe the userdata partition after un-
locking. After the device was unlocked, we were able to flash our
modified boot. img and vbmeta. img without wiping the userdata
partition, but a re-lock of the bootloader was still handled by issu-
ing the appropriate fastboot flashing lock command, wiping
the userdata partition in the process When further testing the
handling of the bootloader lock state, we found that in a locked
state, this devinfo partition changes by only two bits, and by flash-
ing the locked devinfo partition, we could re-lock the bootloader
without wiping the userdata partition at all.

Cubot A1. Using the Unisoc Upgrade Download tool, we flashed
modified firmware onto the Cubot A1 without unlocking the boot-
loader or wiping the userdata partition.

Tecno Spark 10 Pro. The MTKClient tool was used to dump par-
titions on the Tecno Spark 10 Pro and to flash modified partitions
without wiping the userdata partition. While a security patch in
later firmware versions mitigated the exploit that allowed force-
flashing on locked devices, attackers can still install modified firm-
ware on unlocked devices and relock the bootloader.

4 Related Work & Discussion

The security of the Android ecosystem has been extensively stud-
ied, particularly in the context of firmware integrity. Prior research
has highlighted vulnerabilities in Android bootloaders and firm-
ware [9, 15], which should be detected by verified boot mecha-
nisms in Android and in Linux systems more generally [6, 13].
For instance, BootStomp [15] identified memory corruption and
unlock-bypass vulnerabilities in commercial Android devices, while
FirmAlice [16] demonstrated authentication bypass vulnerabilities
in other types of firmware. These studies underscore the impor-
tance of robust bootloader and firmware integrity mechanisms, which
are directly relevant to the exploitation path of the AVBTestKeyln-
TheWild vulnerability.
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Original Equipment Manufacturer (OEM) practices of system
customization have also been shown to introduce security issues,
such as the inclusion of vulnerable apps [5, 7, 19, 20] or unsafe mod-
ifications to access control policies [10, 14]. In addition, vendors
often weaken security by failing to promptly update the software
components they ship, sometimes including firmware or libraries
that are significantly outdated [8, 11, 12, 17, 18].

By definition, certain vendor-provided elements, including ra-
dio chipsets or hardware-backed security modules (in Android these
are the TEE or StrongBox) are explicitly out of scope for AVB [13].
The platform is still open to OEM customization there, which, as
our results and related work show, lead to weakened or in some
parts invalidated security guarantees [18]. Some of those elements
rely on trust anchors baked into the chip, and thus further frag-
menting the security guarantees of Android on a per-device basis.

Previous vulnerabilities [CVE-2024-20865, CVE-2018-1000205,
CVE-2018-9567] have shown the importance of a secure supply
chain to verify the integrity of firmware. A very similar vulnerabil-
ity to AVBTestKeyInTheWild was also discovered in the past [CVE-
2023-45779], which takes advantage of the use of public AOSP test
keys APEX modules and seven OEMs were found to be at risk.

4.1 Impact on the Android Ecosystem

At its core, the AVBTestKeyInTheWild vulnerability allows attack-
ers to modify signed partitions on affected devices, fundamentally
undermining the guarantees provided by AVB. This breach enables
adversaries to bypass critical integrity checks and permits the un-
detected installation and launch of modified firmware.

Vulnerable devices permit attackers to alter system partitions,
sometimes even on devices with locked bootloaders. In typical sce-
narios, flashing modified partitions requires unlocking the boot-
loader, which triggers a wipe of the userdata partition. By lever-
aging the update tools mentioned in Section 3.1, attackers can flash
modified firmware images on affected devices, potentially even
without wiping the userdata partition. This creates a significant
supply chain risk, as compromised devices can be prepared by flash-
ing modified partitions and be distributed to unsuspecting users,
who have no indication that their device has been tampered with.
Due to several additional vulnerabilities, we were able to force-
flash partitions without triggering a wipe, allowing us to retain
user data and settings on all tested devices (Fairphone 3, Cubot A1,
and Tecno Spark 10 Pro). On these devices, attackers can access
sensitive user data without requiring any immediate interaction
from the user, by flashing a modified firmware image and waiting
for the entry of the LSKF.

Furthermore, the ability to bypass Android device integrity
checks renders existing mechanisms for detecting firmware mod-
ifications ineffective. Applications that rely on these checks, such
as banking or enterprise security apps, are unable to distinguish
between genuine and compromised devices. Attackers can lever-
age this vulnerability to gain persistent root access, embed mali-
cious code (such as keyloggers or spyware) into system partitions,
and maintain control over the device even after factory resets. The
exploit also enables large-scale attacks, as a single modified firm-
ware image can be deployed across multiple identical devices, and



the modification process is often similar to other devices from the
same vendor.

Depending on the device, exploitation of this vulnerability is
usually straightforward and fast. If an attacker has a prepared firm-
ware image, they can flash it onto a vulnerable device in a matter
of seconds, switching the device from a secure state to a compro-
mised state without any user interaction.

Impact on Vendors. The use of insecure signing keys in produc-
tion firmware indicates lapses in supply chain security and key
management practices. Vendors may be subject to regulatory scru-
tiny, potential lawsuits, and loss of consumer trust. Additionally,
the need to remediate affected devices in the field can incur sig-
nificant costs, including firmware updates, customer support, and
possible device recalls.

Impact on Device Owners. Owners of affected devices may be
unaware that their device has been compromised, as standard in-
tegrity checks and bootloader states do not indicate tampering.
This can lead to unauthorized access to personal data, financial loss,
and exposure to further attacks. The inability to reliably detect or
fix compromised devices undermines user confidence in the secu-
rity of the Android platform.

4.2 Detection of Modified Firmware

The integrity of an Android device’s firmware can typically be veri-
fied using the boot state indicator. For instance, executing the com-
mand adb shell getprop ro.boot.verifiedbootstate will re-
turn green if the device is in a verified boot state, indicating that
all critical partitions have passed integrity checks.

Partitions on Android devices are protected using cryptographic
signatures, which are stored as vbmeta header and footer sec-
tions within the partition disk images. The vbmeta. img file plays a
central role in this process, as it contains a hashtree that represents
the integrity of all included partitions. This hashtree is signed with
a key which, in our case, is a test key included for development or
testing purposes. A Verified Boot Hash is computed over all
partitions and included in the vbmeta. img. This hash serves as a
reference for detecting any unauthorized changes to the partitions.
If a partition is modified, the hash will no longer match, signaling
a potential compromise. However, not all partitions are covered
by the vbmeta.img. All major vendors tested, including Google,
have some partitions that are not included in the vbmeta.img. If
an attacker possesses the key used to sign vbmeta. img-excluded
partitions, they can modify these partitions and re-sign them with
the same signing key. In such cases, the system will not detect the
changes, as the modified partitions will appear valid during ver-
ification, and the Verified Boot Hash will remain unchanged.
This limitation highlights a potential vulnerability in the firmware
integrity verification process.

To detect changes in the firmware, even when the hashtree is
signed correctly (i.e. the vbmeta.img is signed with a leaked or
test key), it is necessary to know the exact hashes of all partitions
published by the vendor. One way to achieve this is through trans-
parency logs. Google already offers transparency logs within their
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Android Binary Transparency'® project, which at the time of writ-
ing includes Pixel Firmware Transparency'? and Google System
APK Transparency'® logs.

4.3 Mitigation Recommendations

As a first step, we recommend that at least all mentioned Android
device manufacturers immediately review their firmware and APK
signing practices to ensure that no AOSP test keys are used in fu-
ture production-grade firmware.

We recommend that the Android build process either treats all
AOSP test keys as placeholders that cannot be used to compile pro-
duction firmware, or, at the very least, adds a test at the end of the
build process that checks for the presence of test keys anywhere in
the firmware. Android’s testing frameworks, such as CTS or STS,
should be enhanced to identify and flag firmware that uses weak or
insecure signing keys, possibly using databases of leaked and inse-
cure private keys. These testing frameworks play a critical role in
maintaining platform security by verifying established standards,
and by missing checks for the presence of test keys in production
firmware, highlighting gaps in the testing process.

The mentioned recommendations can all be implemented in the
AOSP code base and therefore we therefore consider them feasible.

The completeness of partition hashes in vbmeta is not enforced
at the moment and integrity of firmware for other CPUs is out
of scope for AVB [13]. The Android keystore attestation process
should also be updated to include all cryptographic hashes and
signatures involved in the firmware boot process, not just the par-
titions included in the vbmeta.img. This would provide a more
complete picture of the device’s security state, allowing for bet-
ter verification of its integrity. One simple solution would be to
enable apps to read the full vbmeta structure without requiring
elevated system privileges. Integrity of these structures can be ver-
ified through the existing keystore attestation certificates and their
intended content is publicly known from official device images, so
these read requests would not seem to require further authentica-
tion. However, in combination, this would allow detection of modi-
fications through remote attestation. We argue that it is not feasible
to include tests for the completeness of partitions in vbmeta, how-
ever, including other CPUs cryptographic hashes of the firmware
and public keys in the vbmeta. img and the attestation certificate
would improve the integrity of Android devices. Due to various sig-
nature formats of different SoC vendors, this would be challenging
to implement in 1ibavb.

5 Coordinated Disclosure

Due to the severity of this vulnerability and its impact on mul-
tiple vendors—namely Fairphone, Transsion (Tecno, Itel, Infinix),
Cubot, and Redmagic—we decided to report our findings to Google
using their Bug Hunters program'®, as well as to all affected ven-
dors, within an ethical disclosure window of at least 90 days be-
fore disclosure. Our Coordinated Vulnerability Disclosure (CVD)
with the ID 416187987 received a High severity and High quality
rating from Google’s security team. We informed Google of our
Bhttps://developers.google.com/android/binary_transparency/overview
“https://developers.google.com/android/binary_transparency/pixel_overview

"https://developers.google.com/android/binary_transparency/googlelp/overview
!Shttps://bughunters.google.com/
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recommendations mentioned in section 4.3 to be implemented in
AOSP. The Tecno Security Response Center!” responded promptly,
acknowledging that the vulnerability was known and has been
fixed in new devices since 2023. Fairphone also responded in a
timely manner, indicating they would investigate the report. Simi-
lar to Tecno, Fairphone uses secure signing keys for the Fairphone
5, which indicates that they are also aware of this issue and fixed
it. Cubot and Redmagic did not respond to our report.

6 Conclusion

This paper highlights a critical vulnerability in the Android firm-
ware supply chain that undermines device security and user trust.
By exploiting weak signing practices, attackers can bypass integrity
checks, modify firmware, and retain user data without detection.
Our analysis demonstrates the widespread impact of this issue, af-
fecting multiple manufacturers and device models. We showcased
how compromised firmware can pass security checks and appear
as bootloader-locked devices, posing significant risks to user pri-
vacy and the Android ecosystem.

These findings emphasize the need for stricter firmware signing
protocols and enhanced verification mechanisms. Current tools,
such as the Compatibility Test Suite and Verified Boot, fail to de-
tect these exploits, leaving devices vulnerable. We recommend im-
mediate action, including eliminating test keys in production firm-
ware, improving keystore attestation, and expanding the scope of
integrity checks to cover all partitions.

This work underscores the importance of robust supply chain
security and calls for collaborative efforts among stakeholders to
address these weaknesses. By implementing the proposed mitiga-
tions, the Android ecosystem can strengthen its defenses and re-
store confidence in device integrity.
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